Самое главное по химии для огэ. Онлайн тесты гиа по химии

19.03.2024 Шины и диски

ученика. В экзамене сочетается большое количество заданий и очень ограниченное время на их выполнение – на одно задание приходится 5,5 минут. Минимальный порог по химии в 2017 году равен девяти баллам. В зависимости от набранных баллов выставляется соответствующая отметка. Максимальный балл, в зависимости от типа теста, может быть равен 34 .Экзамен состоит из двух частей, включающих в себя 22 задания.
  • Часть 1: 19 заданий (1–19) с кратким ответом. Записывается в виде цифры либо в виде последовательности цифр.
  • Часть 2: три задания (20–22) с развернутым ответом. Дайте полный ответ, включающий в себя необходимые уравнения реакций и расчеты.
  • В данном учебном материале будет представлена: теория и тесты по своей сложности и структуре идентичны реальным экзаменам.
  • Все предложенные тесты разработаны и одобрены для подготовки к ОГЭ Федеральным институтом педагогических измерений (ФИПИ).

Скачать:


Предварительный просмотр:

Современное представление о строении атома. Изотопов. Строение электронных оболочек атомов элементов I-IV периодов. S, p, d - элементы.

Электронная конфигурация атома. Основное и возбуждённое состояния атомов.

Изотопы – атомы одного элемента, с одинаковым ядерным зарядом, но различным количеством нейтронов в ядре. Характеристика изотопа: массовое число и порядковый номер.

Различные положения электрона вокруг ядра рассматривают как электронное облако с определённо плотностью отрицательного заряда.

Орбиталь –Различают по форме: s, p, d, f –орбитали.

S – орбиталь.

Электронная оболочка любого атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни). Уровни, в свою очередь, подразделяются на подуровни.

При сообщении дополнительной энергии атому происходит переход электронов с более низкой по энергии орбитали на более высокую по энергии орбиталь.

Ca(1s 2 2s 2 2p 6 3 s 2 3p 6 4s 2 ) → Ca* (1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 1 )

Основное состояние возбуждённое состояние

Строение атома и химические свойства элементов

Из рассмотренных электронных конфигураций атомов видно, что элементы VIIIА-группы (Не,Ne,Аг и др.)имеют уровни одновременно (s 2 р 6 ), такие конфигурации обладают высокой устойчивостью и обеспечивают химическую пассивность благородных газов.

В атомах остальных элементов внешние s – и р-подуровни - незавершенные, они и показаны в сокращенных электронных конфигурациях, например 17 С1 = [ 10 Ке]Зs 2 Зр 5 (символ благородного газа отвечает сумме заполненных предыдущих подуровней, т. е. 10 Nе = 1s 2 2s 2 2р 6 "). Незавершенные подуровни и электроны на них иначе называются валентными, так как именно они могут участвовать в образовании химических связей между атомами.

Электронная конфигурация атома элемента определяет свойства этого элемента в периодической системе. Число энергетических уровней данного элемента равно номеру периода, а число валентных электронов атома - номеру группы, к которым относится элемент.

Если валентные электроны расположены только на а томной s- орбитали, то элементы относятся к.секции s - элементов (1А-, IIА-группы); если они расположены на s- и р - орбиталях, то элементы относятся к секции р- элементов (от IIIА- до VIIIА- группы).

В соответствии с энергетической последовательностью подуровней, начиная с элемента скандий Sс, в периодической системе появляются Б - группы, а у атомов этих элементов заполняется d - подуровень предыдущего уровня (см. выше примеры электронных конфигураций Sс, Сг, Мn, Сu и Zn). Такие элементы называются d – элементами (переходными элементами), и их в ка ждом периоде десять, например, в 4-м периоде это элементы от Sc до Zn.

Атомы типичных металлов легко отдают свои валентные электроны(полностью или частично) и становятся простыми катионами.

K(4s 1 ) → K + (4s º ),

Ca(4s 2 ) → Ca 2+ (4sº),

Cu(3d 10 4s 1 ) → Cu 2+ (3d 9 4s 0 ),

Атомы типичных неметаллов легко принимают дополнительные электроны на валентные подуровни (до восьми внешних электронов) и становятся простыми анионами, например:

N(2s 2 2p 3 ) → N -3 (2s 2 2p 6 )

Тест. «Строение атома.»

1. Количество электронов в атоме равно

2 . Ион, в составе которого 16 протонов и 18 электронов, имеет заряд
1) +4 2) -2 3) +2 4) -4

3. Внешний энергетический уровень атома элемента, образующего высший оксид состава ЭОз, имеет формулу

1) ns 2 np 1 2) ns 2 nр 2 3) nз 2 nр 3 4) ns 2 nр 4

4. Электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 в основном состоянии имеет атом

1) лития

2) натрия

3) калия

4) кальция

5. В основном состоянии три неспаренных электрона имеет атом

1) кремния

2) фосфора

3) серы

4) хлора

6. Элемент с электронной конфигурацией внешнего уровня... 3s 2 3p 3 образует водородное соединение состава

1) ЭН 4 2) ЭН 3) ЭН 3 4) ЭН 2

7. Атом металла, высший оксид которого Ме 2 О 3 , имеет электронную формулу внешнего энергетического уровня

1) ns 2 пр 1 2) ns 2 пр 2 3) ns 2 np 3 4) ns 2 np s

8. Высший оксид состава R 2 O 7 образует химический элемент, в атоме которого заполнение электронами энергетических уровней соответствует ряду чисел:

1) 2, 8, 1 2) 2, 8, 7 3) 2, 8, 8, 1 4) 2, 5

9. У атома серы число электронов на внешнем энергетическом уровне и заряд ядра равны соответственно

1)4 и + 16 2)6 и + 32 3)6 и + 16 4)4 и + 32

10. Число валентных электронов у марганца равно

1) 1 2) 3 3) 5 4) 7

11. Одинаковое число валентных электронов имеют атомы калия и

1) углерода 2) магния 3) фосфора 4) натрия

Предварительный просмотр:

Предварительный просмотр:

1.Периодический закон, история открытия, современная формулировка, её отличие. Периодическая система и ее структура. S,p,d,f-элементы

Д.И. Менделеев сформулировал Периодический закон: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса ". Менделеев учитывал, что для некоторых элементов атомные массы могли быть определены недостаточно точно. В современной Периодической системе известны некоторые исключения в порядке возрастания масс атомов, что связано с особенностями изотопного состава элементов:

Ar − 39,9 и K − 39,1; Co − 58,9 и Ni − 58,7.

После того, как было доказано ядерное строение атома и равенство порядкового номера элемента заряду ядра его атома, Периодический закон получил новую формулировку:

"Свойства элементов, а также образуемых ими веществ находятся в периодической зависимости от заряда их атомных ядер".

Заряд ядра атома определяет число электронов в оболочке атома.

Строение внешней электронной оболочки периодически повторяется, и это приводит к периодическому изменению химических свойств элементов и их соединений.

Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом).

Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную).

В длиннопериодном варианте Периодической системы - 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют сходное строение внешних электронных оболочек атомов и проявляют определенное химическое сходство.

Номер группы в Периодической системе определяет число валентных электронов в атомах s- и p-элементов.

В группах, обозначенных буквой А (главных подгруппах), содержатся элементы, в которых идет заселение s- и р-оболочек:

S-элементы (IA- и IIA-группы)

Р-элементы (IIIA-VIIIA-группы)

В группах, обозначенной буквой Б (побочных подгруппах), находятся элементы, в которых заселяются d-подуровни - d-элементы .

Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами.

Номер периода = Число энергетических уровней (слоёв) , заполненных электронами = Обозначение последнего энергетического уровня

Порядок формирования периодов связан с постепенным заселением энергетических подуровней электронами.

Последовательность заселения определяется принципом минимума энергии, принципом Паули и правилом Хунда.

3. Радиусы атомов, их периодические изменения в системе химических элементов. Электроотрицательность.

1) Атомные и ионные радиусы.

За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус.

В периодах орбитальные атомные радиусы по мере увеличения заряда ядра уменьшаются , т.к. растет заряд ядра и => притяжение внешнего электронного слоя к ядру.

В подгруппах радиусы в основном увеличиваются из-за возрастания числа электронных слоёв.

У s- и p-элементов изменение радиусов как в периодах, так и в подгруппах более заметно, чем у d- и f-элементов, поскольку d- и f-электроны находятся на внутренних, а не внешних уровнях.

Уменьшение радиусов у d- и f-элементов в периодах называется d- и f-сжатием. Следствием f-сжатия является то, что атомные радиусы электронных аналогов d-элементов пятого и шестого периодов практически одинаковы:

Zn – Hf Nb – Ta

r атома , нм 0,160 – 0,159 0,145 – 0,146

Эти элементы из-за близости их свойств называются элементами-близнецами.

Образование ионов приводит к изменению ионных радиусов по сравнению с атомными.

Радиусы катионов всегда меньше, а радиусы анионов всегда больше соответствующих атомных радиусов.

Изоэлектронные ионы – это ионы, имеющие одинаковую электронную оболочку.

Радиус изоэлектронных ионов уменьшается слева направо по периоду, т.к. заряд ядра увеличивается и растёт притяжение внешнего электронного уровня к ядру.

Пример: изоэлектронные ионы с электронной оболочкой, соответствующей аргону – (18 е): S 2- , Cl - , K + , Ca 2+ и т.п. В этом ряду радиус уменьшается, т.к. растёт заряд ядра.

2) Электроотрицательность - это способность атома элемента к притягивать к себе электроны в химической связи.

Электроны в общей электронной паре смещены к атому того элемента, который имеет большую электроотрицательность.

Слева направо по периоду происходит увеличение электроотрицательности , т.к. растёт заряд ядра и внешний уровень притягивается к ядру сильнее.

Сверху вниз по подгруппе электроотрицательность уменьшается , т.к. увеличивается число электронных уровней и увеличение радиуса. Внешние электроны слабее притягиваются к ядру.

На рис. приведены значения электроотрицательности различных элементов по Полингу. Электроотрицательность фтора в системе Полинга принята равной 4.

4. Закономерности изменения химических свойств элементов и их соединений по периодам и группам.

Металлами являются :

Все элементы побочных подгрупп;

- лантаноиды, актиноиды ;

Все s- элементы, кроме водорода и гелия.

Р-элементы делятся диагональю на металлы и неметаллы следующим образом:

В е

Неметаллы

металлы

22 штуки

Каждый период начинается щелочным металлом (или водородом), а заканчивается инертным газом.

Валентность – число связей, которые образует атом в молекуле.

Высшая валентность как правило равна номеру группы (исключения – элементы второй половины второго периода – азот, кислород, фтор, инертные газы – гелий, неон, аргон, а также металлы побочных подгрупп первой и VIIB группы (второй и третий элемент «триады»)).

Степень окисления – условный заряд у атома в молекуле.

Высшая положительная степень окисления определяется числом валентных электронов и равна номеру группы.

У s- и р-элементов она равна числу внешних электронов. У d-элементов (кроме групп IB,IIB и VIIIB) - она равна числу d+s электронов.

Исключения:

1) фтор, кислород

2) инертные газы – гелий, неон, аргон.

3) медь, серебро, золото

4) кобальт, никель, родий, палладий, иридий, платина.

Для неметаллов также характерна низшая (отрицательная) степень окисления:

Отрицательная

степень окисления = 8 – номер группы.

неметалла

Высшие оксиды и гидроксиды.

1) Степень окисления элемента в высшем оксиде и гидроксиде равна номеру группы: SeO 3 – высший оксид селена.

2) Чем активнее металл, тем более выражены основные свойства высшего оксида и гидроксида.

3) Чем активнее неметалл и чем больше высшая степень окисления – тем сильнее выражены кислотные свойства.

Водородные соединения.

Существует два типа водородных соединений:

1) Ионные солеобразные гидриды – это соединения активных металлов с водородом, в которых водород имеет отрицательную степень окисления: СаН 2 – гидрид кальция.

2) летучие водородные соединения неметаллов . В них отрицательную степень окисления имеет неметалл, а водород имеет степень окисления +1 . Они все газы, кроме воды. Свойства они проявляют различные:

Метан - CH 4

не проявляет

Кислотно-основных свойств

Аммиак - NH 3

основание

H 2 O

Проявляет амфотерные свойства

Силан SiH 4

Фосфин PH 3

H 2 S

Арсин AsH 3

H 2 Se

Летучие неустойчивые

Кислотные

свойства

Предварительный просмотр:

Предварительный просмотр:

Задание 16 .

Предварительный просмотр:

Свойства кислот .

  1. Кислота + металл (стоящий в ряду активности левее Н)- > H 2 + соль

(кроме HNO 3 и H 2 SO 4 (кон) )

HCl + Na - >

H 3 PO 4 + Mg - >

HCl + Ba - >

HBr + Cu - >

H 2 SO 4 (разб) + Al - >

HI + Li - >

H 2 SO 4 (разб) + Ag - >

H 3 PO 4 + K - >

2. Кислота + основным оксидом - > соль + вода

H 2 SO 4 + Al 2 О 3 - >

H 3 PO 4 + K 2 О - >

HBr + Cu О - >

HI + FeO - >

HNO 3 + Fe 2 O 3 - >

H 3 PO 4 + Zn О - >

HBr + Cu О - >

H 2 CO 3 + Na 2 О - >

3. Кислота + соль - > соль 1 + кислота 1

1) НЕРАСТВОРИМАЯ соль + БОЛЕЕ СИЛЬНАЯ кислота!

2) если и соль, и кислота растворимы, то должен выделиться ОСАДОК, ГАЗ, более слабая кислота!

Примерный ряд кислот

H2SO4 >HCl=HNO3 >H3PO4 >HF >HNO2>CH3COOH>H2CO3 >H2S>H2SiO3

Na 2 CO 3 + HCl - >

CuSO 4 + HNO 3 - >

Na 2 SiO 3 + HCl - >

Ca 3 (PO 4 ) 2 + H 2 SO 4 - >

CaCO 3 + HNO 3 - >

ZnS + HBr - >

H 2 SiO 3 + KCl - >

H 2 CO 3 + Na 2 SO 4 - >

ZnS + H 2 SiO 3 - >

Na 2 SO 3 + HBr - >

CaCO 3 + HNO 3 - >

Na 2 SO 3 + H 2 SiO 3 - >

CaSiO 3 + H 2 SO 4 - >

CaCO 3 + HNO 3 - >

ZnSO 4 + HI - >

H 2 SiO 3 + KNO 3 - >

H 2 SO 3 + Na 2 SO 4 - >

BaSO 4 + HCl - >

4. кислота + основание -> соль + вода

1) ЩЕЛОЧЬ + любая кислота

2) НЕРАСТВОРИМОЕ основание (или амфотерный гидроксид) + СИЛЬНАЯ кислота

КОН + HBr - >

NaOH + H 2 S - >

Ва(ОН) 2 + H 3 PO 4 - >

Al(OH) 3 + H 2 SO 3 - >

Ве(ОН) 2 + H 2 CO 3 - >

CsOH + HMnO 4 - >

Cr(OH) 3 + HCl - >

Ca(OH) 2 + HClO 4 - >

LiOH + HNO 3 - >

Cu(OH) 2 + H 2 SiO 3 - >

Sr(OH) 2 + H 2 SiO 3 - >

Свойства солей.

1 . соль + основание - > соль + основание

2) В продуктах должен быть осадок, газ или вода!

Са(NO 3 ) 2 + NaОН - >

Ca(ОН) 2 + K 2 CO 3 - >

CuCl 2 + KОН - >

NaOH + ZnS - >

Al(OH) 3 + AgNO 3 - >

BaSO 4 + NaOH - >

Ba(OH) 2 + K 2 SiO 3 - >

Al(NO 3 ) 3 + Ba(OH) 2 - >

  1. соль + соль 1 - > соль 3 + соль 2

1) Исходные вещества должны быть РАСТВОРИМЫ!

2) В продуктах должен быть осадок !

Са(NO 3 ) 2 + NaCl - >

CaCl 2 + K 2 CO 3 - >

CuCl 2 + K 2 S - >

Na 3 PO 4 + ZnS - >

AlCl 3 + AgNO 3 - >

BaSO 4 + Na 3 PO 4 - >

Ba(NO 3 ) 2 + K 2 SiO 3 - >

Al(NO 3 ) 3 + K 2 SO 4 - >

  1. соль + металл - > соль 1 + металл 1

ВСЕГДА: металл должен быть активнее , чем металл в составе соли (левее в ряду! но не левее Al )

в растворе: соль должна быть РАСТВОРИМАЯ, металл не должен реагировать с водой!

В расплаве: соль не должна разлагаться при нагревании!

Сu + ZnCl 2 - >

Na + AlCl 3 - >

K + Cu(NO 3 ) 2 - >

Al + Cu(NO 3 ) 2 - >

Ag + Cu(NO 3 ) 2 - >

Cu + AgNO 3 (раствор) - >

Cu + HgS - >

Fe + CuSO 4 - >

Li + Mg(NO 3 ) 2 - >

Ba + Fe(NO 3 ) 2 - >

4.Соль-> оксид кислотный + оксид основной

Соль – нерастворима в воде

Ba SO 4 - >

СаSiO 3 - >

Fe(NO 3 ) 2 - >

Свойства основных оксидов

  1. Оксид металла +вода-> щелочь (растворимое основание).

CuO + Н 2 О->

CaO + Н 2 О->

Na 2 O + Н 2 О->

FeO + Н 2 О->

BaO + Н 2 О->

MgO + Н 2 О->

K 2 O + Н 2 О->

SrO + Н 2 О->

  1. Оксид металла +кислотой -> соль + вода

H 2 SO 4 + K 2 О - >

H NO 3 + Zn О - >

H 3 PO 4 + Al 2 О 3 - >

H 3 PO 4 + Fe 2 O 3 - >

HBr + FeO - >

HBr + Na 2 О - >

HI + Cu О - >

H 2 CO 3 + Cu О - >

  1. Оксид металла + оксид неметаллам -> соль

При нагревании! (если соль существует!)

CаO + SO 3 - >

CaO + N 2 O 5 - >

Na 2 O + P 2 O 5 - >

ВаO + P 2 O 5 - >

K 2 O + CO 2 - >

MgO + SO 2 - >

  1. Оксид металла + металл (более активный)

K 2 О + Al - >

Zn О + K - >

FeO + Al - >

Fe 2 O 3 + Cu - >

HgO + Cu - >

Cu О + Fe - >

  1. Оксид металла + -> металл + СО
  2. Оксид металла + Н 2 -> металл + Н 2 О
  3. Оксид металла + C О-> металл + СО 2

для металлов стоящих правее Al в электрохимическом ряду напряжения металлов.

K 2 О + C - >

Zn О + СО - >

FeO + C О - >

Fe 2 O 3 + Н 2 - >

HgO + Н 2 - >

Cu О + С - >

Свойства кислотных оксидов

  1. Оксид неметалла +вода-> кислота (растворимая в воде).

SO 3 + Н 2 О->

SiO 2 + Н 2 О->

P 2 O 5 + Н 2 О->

SO 2 2 О->

CO 2 + Н 2 О - >

  1. Оксид неметалла +щелочь-> соль + вода

ЩЁЛОЧЬ + любой оксид,

SO 3 + NaOH - >

SO 2 + KOH - >

N 2 O 5 + LiOH - >

SO 3 + Mg(OH) 2 - >

Государственная итоговая аттестация 2019 года по химии для выпускников 9 класса общеобразовательных учреждений проводится с целью оценки уровня общеобразовательной подготовки выпускников по данной дисциплине. В заданиях проверяются знания следующих разделов химии:

  1. Строение атома.
  2. Периодический закон и Периодическая система химических элементов Д.И. Менделеева.
  3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.
  4. Валентность химических элементов. Степень окисления химических элементов.
  5. Простые и сложные вещества.
  6. Химическая реакция. Условия и признаки протекания химических реакций. Химические уравнения.
  7. Электролиты и неэлектролиты. Катионы и анионы. Электролитическая диссоциация кислот, щелочей и солей (средних).
  8. Реакции ионного обмена и условия их осуществления.
  9. Химические свойства простых веществ: металлов и неметаллов.
  10. Химические свойства оксидов: оснόвных, амфотерных, кислотных.
  11. Химические свойства оснований. Химические свойства кислот.
  12. Химические свойства солей (средних).
  13. Чистые вещества и смеси. Правила безопасной работы в школьной лаборатории. Химическое загрязнение окружающей среды и его последствия.
  14. Степень окисления химических элементов. Окислитель и восстановитель. Окислительно-восстановительные реакции.
  15. Вычисление массовой доли химического элемента в веществе.
  16. Периодический закон Д.И. Менделеева.
  17. Первоначальные сведения об органических веществах. Биологически важные вещества: белки, жиры, углеводы.
  18. Определение характера среды растворакислот и щелочей с помощью индикаторов. Качественные реакции на ионы врастворе (хлорид-, сульфат-, карбонатионы, ион аммония). Качественные реакции на газообразные вещества (кислород, водород, углекислый газ, аммиак).
  19. Химические свойства простых веществ. Химические свойства сложных веществ.
Дата сдачи ОГЭ по химии 2019 года:
4 июня (вторник) .
Изменения структуры и содержания экзаменационной работы 2019 года по сравнению с 2018 годом отсутствуют .
В данном разделе вы найдёте онлайн тесты, которые помогут вам подготовиться к сдаче ОГЭ (ГИА) по химии. Желаем успехов!

Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по химии состоит из двух частей. Первая часть содержит 19 заданий с кратким ответом, вторая часть содержит 3 задания с развёрнутым ответом. В связи с этим в данном тесте представлена только первая часть (т.е. первые 19 заданий). Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 15. Однако для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Но для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


При выполнении заданий А1-А19 выберите только один правильный вариант .
При выполнении заданий B1-B3 выберите два правильных варианта .


При выполнении заданий А1-А15 выберите только один правильный вариант .


При выполнении заданий А1-А15 выберите только один правильный вариант.

Задание 1.Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.

Задание 2.Периодический закон и периодическая система химических элементов Д.И. Менделеева.

Задание 3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.

Задание 4.

Задание 5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.

Скачать:


Предварительный просмотр:

Задание 1

Строение атома. Строение электронных оболочек атомов первых 20 элементов периодической системы Д.И.Менделеева.

Как определить число электронов, протонов и нейтронов в атоме?

  1. Число электронов равно порядковому номеру и числу протонов.
  2. Число нейтронов равно разности между массовым числом и порядковым номером.

Физический смысл порядкового номера, номера периода и номера группы.

  1. Порядковый номер равен числу протонов и электронов, заряду ядра.
  2. Номер А - группы равен числу электронов на внешнем слое (валентных электронов).

Максимальное число электронов на уровнях.

Максимальное число электронов на уровнях определяется по формуле N= 2· n 2 .

1 уровень – 2 электрона, 2 уровень – 8, 3 уровень - 18, 4 уровень – 32 электрона.

Особенности заполнения электронных оболочек у элементов А и В групп.

У элементов А - групп валентные (внешние) электроны заполняют последний слой, а у элементов В - групп – внешний электронный слой и частично предвнешний слой.

Степени окисления элементов в высших оксидах и летучих водородных соединениях.

Группы

VIII

С.О. в высшем оксиде = + № гр

Высший оксид

R 2 О

R 2 О 3

RО 2

R 2 О 5

RО 3

R 2 О 7

RО 4

С.О. в ЛВС = № гр - 8

ЛВС

Н 4 R

Н 3 R

Н 2 R

Строение электронных оболочек ионов.

У катиона – меньше электронов на величину заряда, у анионов - больше на величину заряда.

Например:

Сa 0 - 20 электронов, Сa2 + - 18 электронов;

S 0 – 16 электронов, S 2- - 18 электронов.

Изотопы.

Изотопы - разновидности атомов одного и того же химического элемента, имеющие одинаковое число электронов и протонов, но разную массу атома (разное число нейтронов).

Например:

Элементарные частицы

Изотопы

40 Ca

42 Ca

Обязательно уметь по таблице Д.И. Менделеева определять строение электронных оболочек атомов первых 20 элементов.

Предварительный просмотр:

http://mirhim.ucoz.ru

А 2. В 1.

Периодический закон и периодическая система химических элементов Д.И. Менделеева

Закономерности изменения химических свойств элементов и их соединений в связи с положением в периодической системе химических элементов.

Физический смысл порядкового номера, номера периода и номера группы .

Атомный (порядковый) номер химического элемента равен числу протонов и электронов, заряду ядра.

Номер периода равен числу заполняемых электронных слоёв.

Номер группы (А) равен числу электронов на внешнем слое (валентных электронов).

Формы существования

химического элемента и их свойства

Изменения свойств

В главных подгруппах (сверху вниз)

В периодах

(слева направо)

Атомы

Заряд ядра

Увеличивается

Увеличивается

Число энергетических уровней

Увеличивается

Не изменяется = номер периода

Число электронов на внешнем уровне

Не изменяется = номеру периода

Увеличивается

Радиус атома

Увеличиваются

Уменьшается

Восстановительные свойства

Увеличиваются

Уменьшаются

Окислительные свойства

Уменьшается

Увеличиваются

Высшая положительная степень окисления

Постоянная = номеру группы

Увеличивается от +1 до +7 (+8)

Низшая степень окисления

Не изменяется =

(8-№ группы)

Увеличивается от -4 до -1

Простые вещества

Металлические свойства

Увеличивается

Уменьшаются

Неметаллические свойства

Уменьшаются

Увеличивается

Соединения элементов

Характер химических свойств высшего оксида и высшего гидроксида

Усиление основных свойств и ослабление кислотных свойств

Усиление кислотных свойств и ослабление основных свойств

Предварительный просмотр:

http://mirhim.ucoz.ru

А 4

Степень окисления и валентность химических элементов.

Степень окисления – условный заряд атома в соединении, вычисленный исходя из предположения, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).

Правила определения степени окисления элемента в соединении:

  • С.О. свободных атомов и простых веществ равна нулю.
  • Сумма степеней окисления всех атомов в сложном веществе равна нулю.
  • Металлы имеют только положительную С.О.
  • С.О. атомов щелочных металлов (I(А) группа) +1.
  • С.О. атомов щелочноземельных металлов (II(А) группа)+2.
  • С.О. атомов бора, алюминия +3.
  • С.О. атомов водорода +1 (в гидридах щелочных и щелочноземельных металлов –1).
  • С.О. атомов кислорода –2 (исключения: в пероксидах –1, в OF 2 +2 ).
  • С.О. атомов фтора всегда - 1.
  • Степень окисления одноатомного иона совпадает с зарядом иона.
  • Высшая (максимальная, положительная) С.О. элемента равна номеру группы. Это правило не распространяется на элементы побочной подгруппы первой группы, степени окисления которых обычно превышают +1, а также на элементы побочной подгруппы VIII группы. Также не проявляют своих высших степеней окисления, равных номеру группы, элементы кислород и фтор.
  • Низшая (минимальная, отрицательная) С.О. для элементов неметаллов определяется по формуле: номер группы -8.

* С.О. – степень окисления

Валентность атома – это способность атома образовывать определенное число химических связей с другими атомами. Валентность не имеет знака.

Валентные электроны располагаются на внешнем слое у элементов А - групп, на внешнем слое и d – подуровне предпоследнего слоя у элементов В - групп.

Валентности некоторых элементов (обозначаются римскими цифрами).

постоянные

переменные

ХЭ

валентность

ХЭ

валентность

H, Na, K, Ag, F

Cl, Br, I

I (III, V, VII)

Be, Mg, Ca, Ba, O, Zn

Cu, Hg

II, I

Al, В

II, III

II, IV, VI

II, IV, VII

III, VI

I - V

III, V

C, Si

IV (II)

Примеры определения валентности и С.О. атомов в соединениях:

Формула

Валентности

С.О.

Структурная формула вещества

N III

N N

NF 3

N III, F I

N +3, F -1

F - N - F

NH 3

N III, Н I

N -3, Н +1

Н - N - Н

H 2 O 2

Н I, О II

Н +1, О –1

H-O-O-H

OF 2

О II, F I

О +2, F –1

F-O-F

*СО

С III, О III

С +2, О –2

Атом «С» передал в общее пользование два электрона, а более электроотрицательный атом «О» оттянул к себе два электрона:

У «С» не будет заветной восьмерки электронов на внешнем уровне – четыре своих и два общих с атомом кислорода. Атому «О» придется передать в общее пользование одну свою свободную электронную пару, т.е. выступить в роли донора. Акцептором будет атом «С».

Предварительный просмотр:

А3. Строение молекул. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.

Химическая связь – это силы взаимодействия между атомами или группами атомов, приводящие к образованию молекул, ионов, свободных радикалов, а также ионных, атомных и металлических кристаллических решеток.

Ковалентная связь – это связь, которая образуется между атомами с одинаковой электроотрицательностью или между атомами с небольшой разницей в значениях электроотрицательности.

Ковалентная неполярная связь образуется между атомами одинаковых элементов – неметаллов. Ковалентная неполярная связь образуется, если вещество простое, например, O 2 , H 2 , N 2 .

Ковалентная полярная связь образуется между атомами разных элементов – неметаллов.

Ковалентная полярная связь образуется, если вещество сложное, например, SO 3 , H 2 O, НСl, NH 3 .

Ковалентная связь классифицируется по механизмам образования:

обменный механизм (за счёт общих электронных пар);

донорно-акцепторный (атом - донор обладает свободной электронной парой и передаёт её в общее пользование с другим атомом - акцептором, у которого имеется свободная орбиталь). Примеры: ион аммония NH 4 + , угарный газ СО.

Ионная связь образуется между атомами, сильно отличающимися по электроотрицательности. Как правило, когда соединяются атомы металлов и неметаллов. Это связь между разноименно зараженными ионами.

Чем больше разница ЭО атомов, тем связь более ионная.

Примеры: оксиды, галогениды щелочных и щелочноземельных металлов, все соли (в том числе соли аммония), все щёлочи.

Правила определения электроотрицательности по периодической таблице:

1) слева направо по периоду и снизу вверх по группе электроотрицательность атомов увеличивается;

2) самый электроотрицательный элемент – фтор, так как инертные газы имеют завершенный внешний уровень и не стремятся отдавать или принимать электроны;

3) атомы неметаллов всегда более электроотрицательны, чем атомы металлов;

4) водород имеет низкую электроотрицательность, хотя расположен в верхней части периодической таблицы.

Металлическая связь – образуется между атомами металлов за счет свободных электронов, удерживающих положительно заряженные ионы в кристаллической решетке. Это связь между положительно заряженными ионами металлов и электронами.

Вещества молекулярного строения имеют молекулярную кристаллическую решетку, немолекулярного строения – атомную, ионную или металлическую кристаллическую решетку.

Типы кристаллических решеток:

1) атомная кристаллическая решетка: образуется у веществ с ковалентной полярной и неполярной связью (C, S, Si), в узлах решетки находятся атомы, эти вещества являются самыми твердыми и тугоплавкими в природе;

2) молекулярная кристаллическая решетка: образуется у веществ с ковалентной полярной и ковалентной неполярной связями, в узлах решетки находятся молекулы, эти вещества обладают небольшой твердостью, легкоплавкие и летучие;

3) ионная кристаллическая решетка: образуется у веществ с ионной связью, в узлах решетки находятся ионы, эти вещества твердые, тугоплавкие, нелетучие, но в меньшей степени, чем вещества с атомной решеткой;

4) металлическая кристаллическая решетка: образуется у веществ с металлической связью, эти вещества обладают теплопроводностью, электропроводностью ковкостью и металлическим блеском.

Предварительный просмотр:

http://mirhim.ucoz.ru

А5. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений.

Простые и сложные вещества.

Простые вещества образованы атомами одного химического элемента (водород Н 2 , азот N 2 , железо Fe и т.д.), сложные вещества - атомами двух и более химических элементов (вода H 2 O – состоит из двух элементов (водород, кислород), серная кислот H 2 SO 4 – образована атомами трёх химических элементов (водород, сера, кислород)).

Основные классы неорганических веществ, номенклатура.

Оксиды – сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления -2.

Номенклатура оксидов

Названия оксидов состоят из слов «оксид» и названия элемента в родительном падеже (с указанием в скобках степени окисления элемента римскими цифрами): CuO – оксид меди (II), N 2 O 5 – оксид азота (V).

Характер оксидов:

ХЭ

основный

амфотерный

несолеобразующий

кислотный

металл

С.О.+1,+2

С.О.+2, +3, +4

амф. Ме – Ве, Аl, Zn, Cr, Fe, Mn

С.О.+5, +6, +7

неметалл

С.О.+1,+2

(искл. Cl 2 O)

С.О.+4,+5,+6,+7

Основные оксиды образуют типичные металлы со С.О. +1, +2 (Li 2 O, MgO, СаО, CuO и др.). Основными называются оксиды, которым соответствуют основания.

Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7 ). Кислотными называются оксиды, которым соответствуют кислоты.

Амфотерные оксиды образованы амфотерными металлами со С.О. +2, +3, +4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО). Амфотерными называются оксиды, которые проявляют химическую двойственность.

Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).

Основания (основные гидроксиды ) - сложные вещества, которые состоят из

Иона металла (или иона аммония) и гидроксогруппы (-OH).

Номенклатура оснований

После слова «гидроксид» указывают элемент и его степень окисления (если элемент проявляет постоянную степень окисления, то её можно не указывать):

КОН – гидроксид калия

Сr(OH) 2 – гидроксид хрома (II)

Основания классифицируют:

1) по растворимости в воде основания делятся на растворимые (щелочи и NH 4 OH) и нерастворимые (все остальные основания);

2) по степени диссоциации основания подразделяют на сильные (щелочи) и слабые (все остальные).

3) по кислотности, т.е. по числу гидроксогрупп, способных замещаться на кислотные остатки: на однокислотные (NaOH), двухкислотные , трехкислотные .

Кислотные гидроксиды (кислоты) - сложные вещества, которые состоят из атомов водорода и кислотного остатка.

Кислоты классифицируют:

a) по содержанию атомов кислорода в молекуле - на бескислородные (Н C l) и кислородсодержащие (H 2 SO 4 );

б) по основности, т.е. числу атомов водорода, способных замещаться на металл - на одноосновные (HCN), двухосновные (H 2 S) и т.д.;

в) по электролитической силе - на сильные и слабые. Наиболее употребляемыми сильными кислотами являются разбавленные водные растворы HCl, HBr, HI, HNO 3 , H 2 S, HClO 4 .

Амфотерные гидроксиды образованы элементами с амфотерными свойствами.

Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.

Средние (нормальные) соли - сульфид железа(III).

Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.

Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия

Нужно помнить, что кислые соли могут образовывать двух и более основные кислоты, как кислородсодержащие, так и бескислородные кислоты.

Основные соли - гидроксогруппы основания (OH ) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН - групп, входящих в состав соли.

Например, (CuOH) 2 CO 3 - гидроксокарбонат меди (II).

Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.

Смешанные соли - в их составе присутствует два различных аниона.

Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды . Пример: Na 2 SO 4 ·10H 2 O.


Особенности КИМ - 2014

src="../new.jpg" width=22 height=21 border=0 Align=right>

В 2014 г. на выбор органов управления образованием субъектов РФ предлагаются 2 модели экзаменационной работы по химии.

- Демовесия-1 : по структуре аналогична работе 2013 г. Однако в содержание части С внесены существенные изменения:
- Задание С1 предусматривает расстановку коэффициентов в ОВР методом электронного баланса (аналогично С1 ЕГЭ, на более простых реакциях). Оценивается в три первичных балла.
- Задание С2 - расчетная задача (аналогично С2 прошлых лет). Оценивается в три первичных балла.
- Задание С3 - мысленный эксперимент: для заданного набора веществ спланировать двухстадийный синтез нового вещества, написав уравнения реакций, указать признаки их протекания. Написать ионное уравнение одной из реакций. Оценивается в пять первичных баллов.
Максимальный первичный балл за выполнение части С увеличился до 11 баллов, за выполнение всей работы - до 34 баллов.

- Демовесия-2 : усилена практико-ориентированная составляющая, в связи с чем в экзаменационную работу включено задание для выполнения реального химического эксперимента (С4). Задание С4 является продолжением задания С3, которое оценивается в данном случае в 4 балла, максимальная оценка задания С4 - 5 баллов, общая оценка части С - 15 баллов.

Проведение химического эксперимента осуществляется в специальном помещении – химической лаборатории (список оборудования и реактивов приводится в спецификации).

Для наблюдения за проведением химического эксперимента должны обязательно приглашаться специалисты-химики, которые являются одновременно и экспертами по оценке его выполнения.

На химический эксперимент дополнительно выделяется 20 минут. Для организации экзамена по второй модели могут быть использованы:
Методические материалы по организации и проведению ученического химического эксперимента в рамках государственной (итоговой) аттестации (ГИА) 2014 г. выпускников IX классов по химии. /Каверина А.А., Добротин Д.Ю., Молчанова Г.Н. – ФГБНУ «Федеральный институт педагогических измерений», - М, 2013. (

Мы запускаем спецпроект для девятиклассников, где ребята, которые прошли через все трудности, будут рассказывать свои истории про сдачу ОГЭ и давать советы, на что обратить внимание при подготовке.

Михаил Свешников : «Мы начали готовиться с ноября, решали задачи, рассматривали структуру экзамена. До мая было много времени, и я не сильно переживал. Обычно мы выполняли одно задание в разных тестах (это действительно помогает) и делали задания из второй части. К экзамену у нас было примерно 15-20 решений.

Для меня самым сложным оказалось определение формулы вещества по описанию и написание реакции – последнее задание. На пробных ОГЭ решал его верно не всегда. Накануне я старался все максимально повторить. В день экзамена я не сильно волновался, потому что он был последним и не влиял на аттестат, но и плохо написать не хотелось.

Когда мне дали КИМ, я растерялся, потому что вариант оказался очень сложным, но я сразу же приступил к выполнению заданий, которые знал. Решить то последнее задание так и не получилось.

Мне кажется, что надо начинать готовиться за три-четыре месяца до ОГЭ (вы мало что забудете), решать больше заданий из второй части, потому что, как правило, первая часть проще, чем в пособиях. И последнее – следует быть уверенным в себе.»

Ульяна Кис : «К экзамену готовилась очень много. Учила каждый предмет, выполняла все домашние задания, ходила на факультативы, там мы решали множество тестов и пробников.

Переживания, конечно, были, потому что каждый учитель говорил, что будет очень трудно, надо готовиться день и ночь, следует ходить к репетиторам. Но я самостоятельная, и все, что было непонятно, изучала дома, с помощью видеоуроков и разных сайтов.

И вот приближался тот самый день. У нас была четырехчасовая консультация, где кипели мозги, возможно, ещё и потому, что было лето. Мы разобрали все задания по десять раз и очень волновались.

В день ОГЭ мы пошли сдавать его в другую школу, все дрожим от страха, приходим, показываем паспорт, отмечаемся, нас распределяют по аудиториям, открывают при нас задания и раздают их и... Все оказалось так просто. Никто такого не ожидал. Попались задания, которые мы разбирали на первых трех факультативах. Всё элементарно, и с нами сидели кураторы, которые не следили за каждым твоим движением, как бывало на других экзаменах.

Самое главное – быть спокойным и уверенным, не слушать тех, кто хочет тебя запугать.

Советую готовиться самостоятельно, без репетиторов, которым надо платить крупные суммы.

К экзамену можно написать шпору – маленький листик с самым главным, например, формулами. Если решишь ей воспользоваться, то можно выйти в туалет, посмотреть и вспомнить то, что забыл.

Для тех, кто не хочет готовиться или ничего не понимает, в день экзамена на различных сайтах и в группах выкладывают ответы. Для подстраховки можно и их брать с собой.»

Артем Гуров : «Я не тратил много сил на подготовку – час в неделю дополнительных занятий по химии, на половину из которых я не приходил. Активно готовиться я начал в последний момент, за два-три дня до экзамена. Не могу сказать, что очень сильно переживал, потому что была необъяснимая внутренняя уверенность.

Какие-то эмоции у меня появились за час до экзамена, тогда же я и стал понимать, что может произойти, если я его не сдам. Страх покинул меня через полчаса после начала экзамена, когда прошла некоторая «эйфория».

Единственное, что могу посоветовать девятиклассникам – готовиться заранее. К сожалению, без этого никуда.»