Принцип работы сцинтилляционного счётчика. Сцинтилляционный счётчик Сцинтилляционный счетчик кратко

27.12.2023 Автоправо

Сцинтилляционный счетчик

Принцип действия и область применения

В сцинтилляционном счетчике ионизирующее излучение вызывает вспышку света в соответствующем сцинтилляторе, который может быть как твердым, так и жидким. Эта вспышка передается в фотоэлектронный умножитель, который превращает ее в импульс электрического тока. Импульс тока усиливается в последующих ступенях ФЭУ вследствие их высокого коэффициента вторичной эмиссии.

Несмотря на то, что при работе с сцинтилляционными счетчиками в общем случае необходима более сложная электронная аппаратура, эти счетчики обладают по сравнению со счетчиками Гейгера - Мюллера существенными преимуществами.

1. Эффективность для счета рентгеновского и гамма-излучений значительно больше; при благоприятных обстоятельствах она достигает 100%.

2. Световая отдача в некоторых сцинтилляторах пропорциональна энергии возбуждающей частицы или кванта.

3. Временная разрешающая способность более высока.

Сцинтилляционный счетчик является, таким образом, детектором, пригодным для регистрации излучении малой интенсивности, для анализа распределения по энергиям при не слишком высоких требованиях к разрешающей способности и для измерений с помощью схемы совпадений при высокой интенсивности излучения.

Б) Сцинтилляторы

1) Протоны и другие сильно ионизирующие частицы. Если речь идет только о регистрации этих частиц, то одинаково пригодны все виды сцинтилляторов, причем, вследствие их высокой тормозной способности, достаточны слои толщиной порядка миллиметра и еще меньше. Надо, однако, иметь в виду, что световая отдача протонов и б-частиц в органических сцинтилляторах составляет лишь около "/ 10 от световой отдачи электронов той же энергии, в то время как в неорганических сцинтилляторах ZnS и NaJ обе они одного порядка.

Зависимость между энергией световых вспышек и связанной с ней величиной импульсов, а также энергией частиц, переданной сцинтиллятору, для органических веществ, вообще говоря, нелинейна. Для ZnS 1 NaJ и CsJ эта зависимость, однако, близка к линейной. Вследствие хорошей прозрачности для собственного флуоресцентного излучения кристаллы NaJ и CsJ позволяют получить отличную энергетическую разрешающую способность; надо, однако, следить за тем, чтобы поверхность, через которую частицы проникают в кристалл, была очень чистой.

2) Нейтроны. Медленные нейтроны можно обнаруживать, пользуясь реакциями Li6Hs, B10Li" или CdlisCd114. В качестве сцинтилляторов для этой цели применяются монокристаллы из LiJ, порошкообразные смеси, например, 1 весовая часть B 2 O 3 и 5 весовых частей ZnS, их напыляют непосредственно на окошко ФЭУ; также можно применять

Блок-схема сцинтилляционного спектрометра. 1 - сцинтиллятор, 2 - ФЭУ, з - источник высокого напряжения, 4 - катодный повторитель, д - линейный усилитель, 6 - амплитудный анализатор импульсов, 7 - регистрирующий прибор.

ZnS, суспендированный в расплавленном B 2 O 3 , соответствующие соединения бора в сцинтилляторах из искусственных веществ и смеси метилбората или пропионата кадмия с жидкими сцинтилляторами. Если при измерениях нейтронов надо исключить влияние г-излучения, то при тех реакциях, которые вызывают эмиссию тяжелых частиц, надо учитывать указанное выше соотношение для световой отдачи различных сцинтилляторов в зависимости от рода частиц.

Быстрые нейтроны регистрируются с помощью протонов отдачи, образующихся в водородсодержащих веществах. Так как высокое содержание водорода имеет место только в органических сцинтилляторах, то вследствие упомянутых причин уменьшить влияние г-излучения затруднительно. Лучшие результаты достигаются, если процесс образования протонов отдачи отделить от возбуждения сцинтиллятора г-лучами. В этом случае слой последнего должен быть тонким, его толщина определяется пробегом протонов отдачи, так что вероятность регистрации г-излучения существенно уменьшается. В качестве сцинтиллятора в этом случае предпочтительнее применять ZnS. Можно также суспендировать порошкообразный ZnS в прозрачном искусственном веществе, содержащем водород.

Энергетический спектр быстрых нейтронов при помощи сцинтилляторов исследовать почти невозможно. Это объясняется тем, что энергия протонов отдачи может принимать всевозможные значения, вплоть до полной энергии нейтронов, в зависимости оттого, каким образом происходит столкновение.

3) Электроны, в-частицы. Как и для других типов излучений, энергетическая разрешающая способность сцинтиллятора для электронов зависит от соотношения между световой энергией и энергией, переданной сцинтиллятору ионизирующей частицей. Это обусловлено тем, что полуширина кривой распределения величин импульсов, вызванных моноэнергетическими падающими частицами, вследствие статистических колебаний в первом приближении обратно пропорциональна квадратному корню из числа фотоэлектронов, выбитых из фотокатода ФЭУ. Из применяемых в настоящее время сцинтилляторов наибольшие амплитуды импульсов дает NaJ 1 а пз органических сцинтилляторов - антрацен, который при прочих равных условиях дает импульсы примерно в два раза меньшей амплитуды, чем NaJ.

Так как эффективные сечения рассеяния электронов сильно возрастают с увеличением атомного номера, то при применении NaJ 80-90% всех падающих электронов снова рассеивается из кристалла; при применении антрацена этот аффект достигает приблизительно 10%. Рассеянные электроны вызывают импульсы, величина которых меньше величины, отвечающей полной энергии электронов. Вследствие этого количественная оценка в-спектров, полученных при помощи кристаллов из NaJ, весьма затруднительна. Поэтому для в-спектроскопии часто более целесообразно применять органические сцинтилляторы, которые состоят из элементов с малыми атомными номерами.

Обратное рассеяние можно ослабить также следующими приемами. Вещество, в-излучение которого должно исследоваться, или примешивают к сцинтиллятору, если оно не подавляет флуоресцентного излучения, или помещают между двумя поверхностями сцинтилляторов, флуоресцентное Iryny 1 Ienne которых действует на фотокатод, или, наконец, применяют сцинтиллятор с внутренним каналом, в который проходит в-излучение.

Зависимость между световой энергией и энергией, переданной сцинтиллятору излучением, для NaJ линейна. Для всех органических сцинтилляторов это отношение при малой энергии электронов уменьшается. Указанная нелинейность должна учитываться при количественной оценке спектров.

4) Рентгеновское и гамм а-излучение. Процесс взаимодействия электромагнитного излучения с сцинтиллятором в основном состоит из трех элементарных процессов.

При фотоэффекте энергия кванта переходит почти полностью в кинетическую энергию фотоэлектрона, причем она вследствие малого пробега фотоэлектрона в большинстве случаев абсорбируется в сцинтилляторе. Вторичный квант, соответствующий энергии связи электрона, или также поглощается сцинтиллятором, или выходит из него.

В эффекте Комптона электрону передается "только часть энергии кванта. Эта часть с большой вероятностью поглощается в сцинтилляторе. Рассеянный фотон, энергия которого уменьшилась на величину, равную энергии комптон-электрона, также или поглощается сцинтиллятором, или выходит из него.

При образовании пар энергия первичного кванта, за вычетом энергии образования пары, переходит в кинетическую энергию этой пары и в основном поглощается сцинтиллятором. Излучение, образующееся при аннигиляции электрона и позитрона, поглощается в сцинтилляторе или выходит из него.

Энергетическая зависимость эффективных сечений для этих процессов такова, что при малой энергии квантов в основном имеет место фотоэффект; начиная с энергии 1,02 Мае, может наблюдаться образование пар, однако вероятность этого процесса достигает заметной величины лишь при существенно более высоких энергиях. В промежуточной области основную роль играет эффект Комптона.

С увеличением порядкового номера Z эффективные сечения при фотоэффекте и при образовании пар возрастают значительно сильнее, чем при эффекте Комптона. Однако при этом электрону передается:

1) при фотоэффекте, - кроме энергии кванта, переходящей в энергию электрона уже при первичном эффекте, еще только энергия связи фотоэлектрона, отвечающая вторичному излучению, мягкому и легко поглощаемому;

2) при образовании пар - только излучение аннигиляции с дискретной известной энергией. При эффекте Комптона энергия вторичных электронов и рассеянных квантов имеет широкую область возможных значений. Так как" вторичные кванты, как уже было сказано, могут не испытать поглощения и выйти из сцинтиллятора, то для облегчения интерпретации спектров целесообразно по возможности сузить область, в которой преобладает эффект Komhtohj, выбирая сцинтилляторы с большим Ж, например NaJ. Кроме того, отношение энергии света к переданной сцинтиллятору энергии для NaJ практически не зависит от энергии электронов; поэтому во всех сложных процессах, при которых кванты поглощаются, выделяется одинаковое количество света. Такие сложные процессы происходят с тем большей вероятностью, чем больше размеры сцинтиллятора.

Ослабление гамма-лучей в антрацене, ц - коэффициент ослабления; ф - коэффициент фотопоглощения, а - коэффициент комптоновского рассеяния, р - коэффициент образования пар.

Сцинтилляционный счетчик состоит из таких двух составляющих, как сцинтиллятор (фосфор) и умножитель фотоэлектронного типа. В базовой комплектации к данному счетчику производители добавили источник для электрического питания и радиотехническую аппаратуру, обеспечивающую усиление и регистрацию импульсов ФЭУ. Довольно часто сочетание всех элементов данной системы осуществляется с помощью оптической системы - светопровода. Далее в статье рассмотрим принцип действия сцинтилляционного счетчика.

Особенности работы

Устройство сцинтилляционного счетчика довольно непростое, поэтому данной теме необходимо уделить больше внимания. Суть работы данного аппарата заключается в следующем.

В прибор поступает заряженная частица, вследствие этого происходит возбуждение всех молекул. Данные объекты спустя определенный промежуток времени успокаиваются, и в этом процессе они выпускают так называемые фотоны. Весь этот процесс необходим для того, чтобы произошла Определенные фотоны проходят на фотокатод. Этот процесс необходим для появления фотоэлектронов.

Фотоэлектроны фокусируются и поступают на первоначальный электрод. Данное действие происходит по причине работы так называемого ФЭУ. В последующем действии число этих самых электронов увеличивается в несколько раз, чему способствует электронная эмиссия. В результате появляется напряжение. Далее оно лишь увеличивает свое непосредственное действие. Продолжительность импульса и его амплитуда при выходе определяются характерными свойствами.

Что применяется вместо фосфора?

В данном аппарате придумали замещение такого элемента, как фосфор. Как правило, производители используют:

  • кристаллы органического типа;
  • сцинтилляторы из жидкости, которые также должны быть органического типа;
  • твердые сцинтилляторы, которые произведены из пластмассы;
  • сцинтилляторы из газа.

Взглянув на данные замещения фосфора, можно увидеть, что производители в большинстве случаев используют исключительно органические вещества.

Главная характеристика

Пришло время поговорить о главной характеристике сцинтилляционных счетчиков. В первую очередь необходимо отметить выход света, излучение, его так называемый спектральный состав и саму длительность сцинтилляции.

В процессе прохождения через сцинтиллятор различных заряженных частиц производится определенное число фотонов, которые несут тут или иную энергию. Довольно немаленькая часть произведенных фотонов будет поглощена и уничтожена в самом резервуаре. Вместо фотонов, которые были поглощены, произведутся иные виды частиц, которые будут представлять энергию несколько меньшего характера. В результате всего этого действия будут появляться фотоны, свойства которых характерны исключительно для сцинтиллятора.

Световой выход

Далее рассмотрим сцинтилляционный счетчик и принцип его действия. Теперь уделим внимание выходу света. Данный процесс также имеет название эффективность конверсионного типа. Выход света - это так называемое отношение энергии, которая выходит наружу, к величине энергии заряженной частицы, потерянной в сцинтилляторе.

В данном действии среднее число фотонов выходит исключительно наружу. Это также называется энергией среднего характера фотонов. Каждая из присутствующих в приборе частиц выводит наружу не моноэнергетику, а лишь спектр сплошной полосой. Ведь именно он является характерным для данного типа работы.

Необходимо уделить внимание самому важному, ведь данный спектр фотонов самостоятельно выходит из известного нам сцинтиллятора. Важно, чтобы он совпадал или хотя бы частично перекрывался со спектральной характеристикой ФЭУ. Данное перекрытие элементов сцинтиллятора с другой характеристикой определяется исключительно за счет согласованного производителями коэффициента.

В этом коэффициенте спектр наружного типа или же спектр наших фотонов выходит во внешнюю среду данного прибора. На сегодняшний день существует такое понятие, как «сцинтилляционная эффективность». Она представляет собой сравнение прибора с другими данными ФЭУ.

Данное понятие объединяет в себе несколько аспектов:

  • Эффективность берет во внимание число наших фотонов, испускаемых сцинтиллятором на единицу поглощенной энергии. Также этим показателем учитывается чувствительность прибора к фотонам.
  • Эффективность данной работы, как правило, оценивается за счет сравнения со сцинтилляционной эффективностью сцинтиллятора, который принят за эталон.

Различные изменения сцинтилляции

Принцип действия сцинтилляционного счетчика также состоит из следующего не менее важного аспекта. Сцинтилляция может быть подвергнута тем или иным изменениям. Они рассчитываются по специальному закону.

В нем I 0 обозначает максимальный показатель интенсивности рассматриваемой нами сцинтилляции. Что же касается показателя t 0 - то это постоянная величина и обозначает она время так называемого затухания. Это затухание показывает время, в течение которого интенсивность уменьшается в своем показателе в определенные (е) разы.

Также необходимо уделить внимание числу так называемых фотонов. Оно в нашем законе обозначается буквой n.

Полное число фотонов, испущенных в процессе сцинтилляции. Эти фотоны испускаются в определенное время и регистрируются в приборе.

Процессы работы фосфора

Как мы уже писали ранее, сцинтилляционные счетчики действуют на основе работы такого элемента, как фосфор. В данном элементе осуществляется процесс так называемой люминесценции. И он делится на несколько видов:

  • Первый вид представляет собой флуоресценцию.
  • Второй вид - это фосфоресценция.

Эти два вида отличаются, прежде всего, за счет времени. Когда так называемое высвечивание происходит в слиянии с другим процессом или в течение промежутка времени порядка 10 -8 сек - это первый вид процесса. Что же касается второго типа, то тут интервал времени несколько больше предыдущего типа. Данное расхождение по времени возникает по той причине, что данный интервал соответствует жизни атома в неспокойном состоянии.

В общей сложности длительность первого процесса совершенно не зависит от показателя неспокойствия того или иного атома, но что касается выхода данного процесса, то на это влияет именно возбудительность данного элемента. Стоит также отметить тот факт, что в случае с неспокойствием определенных кристаллов скорость так называемого выхода несколько меньше, нежели при фотовозбуждении.

Что представляет собой фосфоресценция?

Достоинства сцинтилляционного счетчика включают в себя процесс фосфоресценции. Под данным понятием большинство людей понимают лишь люминесценцию. Поэтому рассмотрим данные особенности на основе этого процесса. Данный процесс - это так называемое продолжение процесса после завершения того или иного типа работы. Фосфоресценция кристаллофосфоров возникает при рекомбинации электронов и дырок, возникших при возбуждении. В определенных объектах фосфора совершенно невозможно осуществить замедление процесса, так как электроны и их дырки попадают в так называемые ловушки. Из этих самых ловушек они могут освободиться самостоятельным образом, но для этого им, как и другим веществам, необходимо получить дополнительный запас энергии.

В связи с этим длительность процесса также имеет зависимость от той или иной температуры. Если в процессе принимают участие и другие молекулы органического характера, то процесс фосфоресценции происходит лишь в случае пребывания их в метастабильном состоянии. А перейти в нормальное состояние эти молекулы не могут. Лишь в таком случае мы можем увидеть зависимость данного процесса от скорости и от самой температуры.

Особенности счетчиков

Имеет сцинтилляционный счетчик достоинства и недостатки, которые мы рассмотрим в этом разделе. В первую очередь опишем достоинства прибора, ведь их достаточно много.

Специалисты выделяют довольно высокий показатель временной способности. По времени один импульс, который издает данный прибор, не превышает десяти секунд. Но это в том случае, если используются определенные приборы. Данный счетчик имеет этот показатель в несколько раз меньше, чем другие его аналоги с разрядом самостоятельного характера. Это отлично способствует его применению, ведь скорость счета увеличивается в несколько раз.

Следующим положительным качеством данных является довольно мелкий показатель опаздывающего импульса. Но такой процесс осуществляется лишь после того, как частицы пройдут период регистрации. Это также позволяет сэкономить непосредственно время подачи импульса данного вида прибора.

Также сцинтилляционные счетчики имеют довольно высокий уровень регистрации тех или иных частиц, к которым относятся нейроны и их лучи. Для того чтобы увеличить уровень регистрации, обязательно необходимо, чтобы именно эти частицы вступили в реакцию с так называемыми детекторами.

Изготовление аппаратов

Кто изобрел сцинтилляционный счетчик? Сделал это немецкий физик Кальман Хартмут Пауль в 1947 году, а 1948-м ученый изобрел нейтронную радиографию. Принцип работы сцинтилляционного счетчика позволяет выпускать его довольно большого размера. Это способствует тому, что можно осуществлять так называемый герметический анализ довольно большого потока энергии, к которой относятся ультрафиолетовые лучи.

Также можно ввести в состав прибора определенные вещества, с которыми довольно хорошо могут взаимодействовать нейтроны. Что, безусловно, имеет свои непосредственные положительные качества в изготовлении и будущем применении счетчика данного характера.

Вид конструкции

Частицы сцинтилляционного счетчика обеспечивают его качественную работу. Потребители предъявляют следующие требования к работе устройства:

  • на так называемом фотокатоде идет самый лучший показатель сбора света;
  • по этому фотокатоду идет распределение света исключительно равномерного типа;
  • ненужные частицы в приборе подвергаются затемнению;
  • магнитные поля не несут абсолютно никакого влияния на весь несущий процесс;
  • коэффициент в данном случае является стабильным.

Недостатки сцинтилляционный счетчик имеет самые минимальные. При осуществлении работы необходимо обязательно добиться того, чтобы амплитуда сигнальных типов импульсов соответствовала другим видам амплитуд.

Упаковка счетчика

Зачастую сцинтилляционный счетчик упаковывают в металлический контейнер, в котором с одной стороны имеется стекло. Кроме того, между самим контейнером и сцинтиллятором размещается слой специального материала , который не дает поступать ультрафиолетовым лучам и теплу. Пластмассовые сцинтилляторы нет необходимости упаковывать в герметичные контейнеры, однако все твердые сцинтилляторы должны иметь на одном из торцов выходное окно. Очень важно уделять внимание упаковке данного прибора.

Преимущества счетчиков

Преимущества сцинтилляционного счетчика состоят в следующих аспектах:

  • Чувствительность данного прибора всегда на самом высоком уровне, а от этого напрямую зависит и его непосредственная эффективность.
  • Способности прибора включают в себя широкий спектр услуг.
  • Способности по различию тех или иных частиц используют только информацию об их энергии.

Именно за счет вышеприведенных показателей данный вид счетчика обошел всех своих конкурентов и по праву стал самым лучшим прибором в своем роде.

Стоит также отметить, что к его недостаткам относится чувствительное восприятие изменения той или иной температуры, а также условий окружающей среды.

Принцип действия и область применения

В сцинтилляционном счетчике ионизирующее излучение вызывает вспышку света в соответствующем сцинтилляторе, который может быть как твердым, так и жидким. Эта вспышка передается в фотоэлектронный умножитель, который превращает ее в импульс электрического тока. Импульс тока усиливается в последующих ступенях ФЭУ вследствие их высокого коэффициента вторичной эмиссии.

Несмотря на то, что при работе с сцинтилляционными счетчиками в общем случае необходима более сложная электронная аппаратура, эти счетчики обладают по сравнению со счетчиками Гейгера - Мюллера существенными преимуществами.

1. Эффективность для счета рентгеновского и гамма-излучений значительно больше; при благоприятных обстоятельствах она достигает 100%.

2. Световая отдача в некоторых сцинтилляторах пропорциональна энергии возбуждающей частицы или кванта.

3. Временная разрешающая способность более высока.

Сцинтилляционный счетчик является, таким образом, детектором, пригодным для регистрации излучении малой интенсивности, для анализа распределения по энергиям при не слишком высоких требованиях к разрешающей способности и для измерений с помощью схемы совпадений при высокой интенсивности излучения.

Б) Сцинтилляторы

1) Протоны и другие сильно ионизирующие частицы. Если речь идет только о регистрации этих частиц, то одинаково пригодны все виды сцинтилляторов, причем, вследствие их высокой тормозной способности, достаточны слои толщиной порядка миллиметра и еще меньше. Надо, однако, иметь в виду, что световая отдача протонов и б-частиц в органических сцинтилляторах составляет лишь около "/ 10 от световой отдачи электронов той же энергии, в то время как в неорганических сцинтилляторах ZnS и NaJ обе они одного порядка.

Зависимость между энергией световых вспышек и связанной с ней величиной импульсов, а также энергией частиц, переданной сцинтиллятору, для органических веществ, вообще говоря, нелинейна. Для ZnS 1 NaJ и CsJ эта зависимость, однако, близка к линейной. Вследствие хорошей прозрачности для собственного флуоресцентного излучения кристаллы NaJ и CsJ позволяют получить отличную энергетическую разрешающую способность; надо, однако, следить за тем, чтобы поверхность, через которую частицы проникают в кристалл, была очень чистой.

2) Нейтроны. Медленные нейтроны можно обнаруживать, пользуясь реакциями Li6Hs, B10Li" или CdlisCd114. В качестве сцинтилляторов для этой цели применяются монокристаллы из LiJ, порошкообразные смеси, например, 1 весовая часть B 2 O 3 и 5 весовых частей ZnS, их напыляют непосредственно на окошко ФЭУ; также можно применять

Блок-схема сцинтилляционного спектрометра. 1 - сцинтиллятор, 2 - ФЭУ, з - источник высокого напряжения, 4 - катодный повторитель, д - линейный усилитель, 6 - амплитудный анализатор импульсов, 7 - регистрирующий прибор.

ZnS, суспендированный в расплавленном B 2 O 3 , соответствующие соединения бора в сцинтилляторах из искусственных веществ и смеси метилбората или пропионата кадмия с жидкими сцинтилляторами. Если при измерениях нейтронов надо исключить влияние г-излучения, то при тех реакциях, которые вызывают эмиссию тяжелых частиц, надо учитывать указанное выше соотношение для световой отдачи различных сцинтилляторов в зависимости от рода частиц.

Быстрые нейтроны регистрируются с помощью протонов отдачи, образующихся в водородсодержащих веществах. Так как высокое содержание водорода имеет место только в органических сцинтилляторах, то вследствие упомянутых причин уменьшить влияние г-излучения затруднительно. Лучшие результаты достигаются, если процесс образования протонов отдачи отделить от возбуждения сцинтиллятора г-лучами. В этом случае слой последнего должен быть тонким, его толщина определяется пробегом протонов отдачи, так что вероятность регистрации г-излучения существенно уменьшается. В качестве сцинтиллятора в этом случае предпочтительнее применять ZnS. Можно также суспендировать порошкообразный ZnS в прозрачном искусственном веществе, содержащем водород.

Энергетический спектр быстрых нейтронов при помощи сцинтилляторов исследовать почти невозможно. Это объясняется тем, что энергия протонов отдачи может принимать всевозможные значения, вплоть до полной энергии нейтронов, в зависимости оттого, каким образом происходит столкновение.

3) Электроны, в-частицы. Как и для других типов излучений, энергетическая разрешающая способность сцинтиллятора для электронов зависит от соотношения между световой энергией и энергией, переданной сцинтиллятору ионизирующей частицей. Это обусловлено тем, что полуширина кривой распределения величин импульсов, вызванных моноэнергетическими падающими частицами, вследствие статистических колебаний в первом приближении обратно пропорциональна квадратному корню из числа фотоэлектронов, выбитых из фотокатода ФЭУ. Из применяемых в настоящее время сцинтилляторов наибольшие амплитуды импульсов дает NaJ 1 а пз органических сцинтилляторов - антрацен, который при прочих равных условиях дает импульсы примерно в два раза меньшей амплитуды, чем NaJ.

Так как эффективные сечения рассеяния электронов сильно возрастают с увеличением атомного номера, то при применении NaJ 80-90% всех падающих электронов снова рассеивается из кристалла; при применении антрацена этот аффект достигает приблизительно 10%. Рассеянные электроны вызывают импульсы, величина которых меньше величины, отвечающей полной энергии электронов. Вследствие этого количественная оценка в-спектров, полученных при помощи кристаллов из NaJ, весьма затруднительна. Поэтому для в-спектроскопии часто более целесообразно применять органические сцинтилляторы, которые состоят из элементов с малыми атомными номерами.

Обратное рассеяние можно ослабить также следующими приемами. Вещество, в-излучение которого должно исследоваться, или примешивают к сцинтиллятору, если оно не подавляет флуоресцентного излучения, или помещают между двумя поверхностями сцинтилляторов, флуоресцентное Iryny 1 Ienne которых действует на фотокатод, или, наконец, применяют сцинтиллятор с внутренним каналом, в который проходит в-излучение.

Зависимость между световой энергией и энергией, переданной сцинтиллятору излучением, для NaJ линейна. Для всех органических сцинтилляторов это отношение при малой энергии электронов уменьшается. Указанная нелинейность должна учитываться при количественной оценке спектров.

4) Рентгеновское и гамм а-излучение. Процесс взаимодействия электромагнитного излучения с сцинтиллятором в основном состоит из трех элементарных процессов.

При фотоэффекте энергия кванта переходит почти полностью в кинетическую энергию фотоэлектрона, причем она вследствие малого пробега фотоэлектрона в большинстве случаев абсорбируется в сцинтилляторе. Вторичный квант, соответствующий энергии связи электрона, или также поглощается сцинтиллятором, или выходит из него.

В эффекте Комптона электрону передается "только часть энергии кванта. Эта часть с большой вероятностью поглощается в сцинтилляторе. Рассеянный фотон, энергия которого уменьшилась на величину, равную энергии комптон-электрона, также или поглощается сцинтиллятором, или выходит из него.

При образовании пар энергия первичного кванта, за вычетом энергии образования пары, переходит в кинетическую энергию этой пары и в основном поглощается сцинтиллятором. Излучение, образующееся при аннигиляции электрона и позитрона, поглощается в сцинтилляторе или выходит из него.

Энергетическая зависимость эффективных сечений для этих процессов такова, что при малой энергии квантов в основном имеет место фотоэффект; начиная с энергии 1,02 Мае, может наблюдаться образование пар, однако вероятность этого процесса достигает заметной величины лишь при существенно более высоких энергиях. В промежуточной области основную роль играет эффект Комптона.

С увеличением порядкового номера Z эффективные сечения при фотоэффекте и при образовании пар возрастают значительно сильнее, чем при эффекте Комптона. Однако при этом электрону передается:

1) при фотоэффекте, - кроме энергии кванта, переходящей в энергию электрона уже при первичном эффекте, еще только энергия связи фотоэлектрона, отвечающая вторичному излучению, мягкому и легко поглощаемому;

2) при образовании пар - только излучение аннигиляции с дискретной известной энергией. При эффекте Комптона энергия вторичных электронов и рассеянных квантов имеет широкую область возможных значений. Так как" вторичные кванты, как уже было сказано, могут не испытать поглощения и выйти из сцинтиллятора, то для облегчения интерпретации спектров целесообразно по возможности сузить область, в которой преобладает эффект Komhtohj, выбирая сцинтилляторы с большим Ж, например NaJ. Кроме того, отношение энергии света к переданной сцинтиллятору энергии для NaJ практически не зависит от энергии электронов; поэтому во всех сложных процессах, при которых кванты поглощаются, выделяется одинаковое количество света. Такие сложные процессы происходят с тем большей вероятностью, чем больше размеры сцинтиллятора.

Ослабление гамма-лучей в антрацене, ц - коэффициент ослабления; ф - коэффициент фотопоглощения, а - коэффициент комптоновского рассеяния, р - коэффициент образования пар.

Это значит, что для увеличения отношения чиста импульсов в линии к полному числу импульсов в спектре надо увеличивать размеры применяемого сцинтиллятора. Это, однако, дорого обходится. При этом надо обращать внимание на то, что достижимая энергетическая разрешающая способность и практически достижимая световая отдача в больших сцинтилляторах ограничиваются, наряду с другими причинами, недостаточной их прозрачностью для флуоресцентного излучения. NaJ применяется в виде цилиндрических кристаллов стандартного размера 038 мм ч 25 мм Количественная оценка сцинтилляционных спектров рентгеновских и гамма-лучей. На рис. приведены две кривые сцинтилляционных спектров г-лучей, полученные с кристаллом NaJ. Граница эффекта Комптона, м - коэффициент ослабления; ф - коэффициент фотопоглощения, о - коэффициент комптоновского рассеяния, р - коэффициент образования пар комптоновского распределения электронов; рассеянный квант выходит из кристалла) определяется равенством:

где комптопграничная энергия комптоновских электронов, - энергия первичных г-квантов, тес2 - энергия покоящегося электрона.

Для сцинтилляторов с малым Z часть спектра, соответствующая комптонэффекту, соответственно возрастает. Комптоновская область с энергиями ниже граничной часто перекрывается так называемым максимумом обратного рассеяния; оно появляется в результате поглощения в сцинтилляторе комптоновских квантов, возникающих при процессах рассеяния в объектах вблизи сцинтиллятора; соответствующие этим квантам комптоновские электроны не достигают сцинтиллятора. Значение этого максимума определяется из соотношения:

Для уменьшения обратного рассеяния коллиматору первичного излучения придают такую форму, чтобы рассеянное излучение не попадало в сцинтиллятор. Для этого целесообразно поставить перед сцинтиллятором узкую диафрагму, после него - диафрагму с широким отверстием, а объекты, вызывающие рассеяние, располагать на достаточно большом расстоянии. Из тех же соображений лучи, падающие на сцинтиллятор, не должны попадать на ФЭУ, они должны проходить лишь через кожух сцинтиллятора

При исследованиях излучения с малой энергией наблюдается так называемый максимум внутренней конверсии, соответствующий энергии:

Его появление вызвано тем, что при фотоэффекте на йоде, находящемся в кристалле NaJ, возникает рентгеновское ^-излучение, выходящее из поверхностных слоев сцинтиллятора.

При энергиях квантов свыше 1,02 Мае возникают еще два максимума, соответствующие энергиям:

Они возникают в результате выхода из сцинтиллятора одного или обоих квантов аннигиляционного излучения.

Разрешающая способность, которая получается с кристаллами NaJ и при хороших ФЭУ, составляет около 7% для линии с энергией 661 кэв, испускаемой при распаде 137Ba.

Разрешающая способность меняется с изменением энергии W примерно по закону.

Калибровать сцинтилляционные спектрометры принято при помощи источников, энергия излучения которых хорошо известна.

В табл.111,7 приведены некоторые излучатели рентгеновских и Гамма-лучей, пригодные для этой цели.

в) Крепление и монтаж твердых сцинтилляторов. Для повышения световой отдачи и разрешающей способности сцинтиллятора, кроме его прозрачности для люминесцентного излучения, имеет большое значение еще возможно более совершенная оптическая система, срабатывающая независимо от места возникновения вспышки света. Для этого сцинтиллятор окружается тонким слоем диффузно отражающего вещества; свободной остается лишь поверхность, прилегающая к окну ФЭУ. Если поглощение, вызванное этим слоем, влияет на исследуемое излучение, как это имеет место для а- или в-частичек, то приходится удовлетворяться рефлектором из тонкой алюминиевой фольги.

Гигроскопические сцинтилляторы, такие, как NaJ, должны быть герметически защищены. В этом случае окно не рекомендуется делать из плексигласа, так как влага, проникшая после достаточно длительного употребления, может вызвать потускнение кристалла. В качестве оптического контакта между сцинтиллятором и окном ФЭУ применяется силиконовое масло DC 200, которое прозрачно до длины волны 3000 А. Канадский бальзам около 3400 А обладает широкой полосой поглощения, поэтому его можно применять только в тех сцинтилляторах, в которых флуоресцентное излучение достаточно длинноволновое.

Крепление кристалла: а) сплошной кристалл, б) кристалл с просверленным отверстием; 1 - сцинтиллятор), 2-рефлектор, 3 - оптический контакт, 4 - стеклянное окно, S - алюминиевый кожух, 6 - замазка.

Если сцинтиллятор нельзя наложить непосредственно на окно ФЭУ, например, когда оно имеет неплоскую поверхность или когда ФЭУ необходимо отодвинуть от сцинтиллятора, то можно применять светопроводы от сцинтиллятора к ФЭУ в виде цилиндров или конусов из люсита или плексигласа.

Монокристаллические сцинтилляторы из NaJ 1 CsJ 1 LiJ, антрацена и стильбена г) имеются в продаже в готовом виде, т.е. закрепленными в оправу. Не рекомендуется самостоятельно закреплять в оправу сильно гигроскопичные кристаллы, если нет специальных приспособлений для этого. Сцинтилляторы из пластмассовых материалов можно изготовлять из имеющегося в продаже сырья. Они обрабатываются так же, как плексиглас, н полируются затем мелким порошком окиси алюминия.

е) Жидкие сцинтилляторы. В тех случаях, когда существенную роль играет высокая временная разрешающая способность, или необходимы сцинтилляторы большого объема, применяют жидкие сцинтилляторы, у которых, однако, световая отдача приблизительно в два раза меньше, чем у антрацена. В некоторых случаях вещество, излучение которого исследуется, можно добавлять в жидкий сцинтиллятор. Этот метод особенно рекомендуется применять в тех случаях, когда корпускулярное или мягкое волновое излучение сильно поглощается в оправе сцинтиллятора. Вещество, введенное в сцинтиллятор, должно растворяться в нем; оно также не должно мешать флуоресцентному излучению. Укажем два рецепта проверенных жидкостей для сцинтилляторов.

1) Раствор 5 г/л п-терфенила.

Если исследуемое вещество не растворяется в сцинтилля-ционной жидкости, то можно применять желеобразные сцинтилляторы, исключающие седиментацию. Типичные свойства применяемых сцинтилляторов даны в табл.111,8.

В) Фотоэлектронный умножитель.

Имеется большой выбор умножителей разных типов, различающихся чувствительностью фотокатода, числом динодов и усилением по току, а также величиной прозрачной поверхности катода. В общем случае большая поверхность катода является нецелесообразной, так как при этом увеличивается и темновой ток, имеющий порядок величины 10~7 а]). Максимум спектральной чувствительности большинства ФЭУ, предназначенных для сцинтилляционных целей, лежит около 4400 А; имеются, однако, также ФЭУ с кварцевыми окнами, обладающие чувствительностью и в ультрафиолетовой области. Окна большинства ФЭУ плоские, так что сцинтиллятор можно устанавливать непосредственно на них. Для получения хорошей энергетической разрешающей способности целесообразно применять ФЭУ с высокой чувствительностью катода, как это было разъяснено на стр. 371.

Рабочие напряжения большинства ФЭУ лежат между 500 и 1500 е. Обычно не рекомендуется работать при максимальном напряжении, указанном в паспорте, так как в этом случае пространственные заряды могут нарушить линейность усиления. Распределение напряжения между отдельными ступенями ФЭУ также может несколько влиять на его линейность и разрешающую способность. Если нет специальных указаний, то наиболее выгодное распределение подбирают экспериментально. Важную роль играет также возможно полное улавливание фотоэлектронов. По этой причине напряжение между катодом и первым динодом должно быть выше, чем между остальными динодами. Некоторые типы ФЭУ снабжены фокусирующими электродами, расположенными между катодом и первым динодом.

Усиление ФЭУ сильно изменяется под влиянием рассеянных магнитных полей. В некоторых случаях усиление ФЭУ оказалось зависящим от его ориентировки относительно магнитного поля Земли. Поэтому ФЭУ целесообразно экранировать от воздействия магнитных полей; в этом отношении хорошо действует мю-металл.

Если необходимо получить высокую временную разрешающую способность, то применяют такие типы ФЭУ, в которых путь электронов сделан возможно короче, а разброс времени их пролета возможно меньше. Для таких требований ФЭУ с динодами в виде жалюзи малопригодны.

При монтаже ФЭУ надо обеспечить полное экранирование его от света, в том числе и от свечения катодов электронных ламп.

г) Вспомогательные электронные устройства.

а) Высоковольтное питание ФЭУ. Так как коэффициент умножения ФЭУ сильно зависит от величины приложенного напряжения, то необходимо обеспечить хорошую стабилизацию последнего, особенно при амплитудном анализе импульсов. При помощи электронных стабилизаторов высокое напряжение можно поддерживать постоянным в течение нескольких часов с точностью до 0,01 о/о.

Напряжение на отдельные диноды подается с делителя напряжения. При этом ток через делитель должен быть большим по сравнению со средним током через ФЭУ. Между последними динодами надо дополнительно включать конденсаторы, чтобы при прохождении импульса напряжение не падало.

Если катод ФЭУ находится под высоким напряжением, то наряду с другими эффектами могут возникать разряды между катодом и заземленным цилиндрическим экраном, который тесно примыкает к стенкам стеклянной трубки; это вызывает появление ложных импульсов и может привести к разрушению катода. Поэтому потенциал защитного цилиндра целесообразно устанавливать на уровне потенциала катода. Это соображение надо иметь в виду при выборе точки заземления источника высокого напряжения.

б) Линейный усилитель. Непосредственно вблизи ФЭУ - часто в одпом блоке с ним - располагается каскад катодного повторителя, к которому может быть присоединен длинный коаксиальный кабель. Если длина L этого кабеля в метрах меньше чем 3-10" Т А, где T a - время нарастания импульса в секундах "), то кабель можно рассматривать как емкостную нагрузку катодного повторителя. Поэтому желательно применять кабели с малой емкостью. Если кабель длиннее указанного характерного размера, то для предотвращения нежелательных отражений на его конце надо включить сопротивление, равное волновому.

За катодным повторителем, являющимся в основном импедансным преобразователем, обычно следует пропорциональный усилитель, линейно увеличивающий амплитуду импульса. При применении ФЭУ с большим коэффициентом умножения от дополнительного усиления можно отказаться. Это может оказаться существенным при получении коротких времен нарастания импульсов для схем совпадений. Времена нарастания в обычных линейных усилителях имеют порядок 0,2 мксек; усилители с линией задержки значительно менее инерционны, однако их коэффициент усиления значительно ниже, а характеристики часто менее близки к линейным. Линейные усилители для достижения хорошей стабильности и линейности обычно содержат отрицательную обратную связь.

Для подавления низкочастотных помех линейные усилители в большинстве случаев содержат элемент связи с малой постоянной времени, дифференцирующий входной импульс; кроме того, этим достигается разделение импульсов, следующих очень тесно друг за другом, в том случае, когда возможны ошибки в определении амплитуды за счет набегания импульсов друг на друга. Формирование импульсов может осуществляться RC-звеном или линией задержки, закороченной на одном конце. Малая постоянная времени должна, однако, превышать время нарастания импульса так, чтобы достигалась максимальная его амплитуда. Постоянные времени всех других элементов должны быть много больше малой постоянной времени. Это необходимо для предотвращения выбросов импульса, вносящих ошибки в измерение его амплитуды.

При формировании импульсов при помощи линии задержки их вершины получаются плоскими, что удобно для определения амплитуды импульсов; для этой цели достаточна длительность импульса около 1 мксек; такая величина обычно и используется.

Во многих практических случаях необходимо исследовать малые импульсы при наличии больших. При этом усилитель не должен блокироваться большими импульсами, искажающими его режим. Специальные электронные схемы позволяют предотвратить такую блокировку. В продаже имеется много различных конструкций линейных усилителей. Самостоятельное их изготовление требует определенного опыта и вспомогательного оборудования.

в) Амплитудные анализаторы импульсов. Для нахождения функции n распределения амплитуд импульсов V в импульсном спектре в простейшем случае может применяться пороговый дискриминатор,. Это - двухламповая схема с двумя устойчивыми состояниями, с помощью которой можно получить стандартные импульсы во всех случаях, когда входные импульсы превосходят по амплитуде заданное

пороговое значение V 0 . Измеренная частота импульсов Ai равна

Изменяя V 0 на небольшие значения на протяжении всего спектра, можно получить так называемый интегральный спектр. Интересную в большинстве случаев функцию распределения n вычисляют по интегральному спектру, производя дифференцирование, что, однако, является весьма неточным методом. Более удовлетворительные результаты можно получить при непосредственном измерении дифференциального спектра. Для этого используют два пороговых дискриминатора, разность пороговых значений которых равна dV; они регистрируют только импульсы, амплитуды которых лежат в интервале от V 0 до K 0 -f-rfF. Метод легко может быть автоматизирован. В " этом случае пороговое напряжение V 0 непрерывно меняется, и показания прибора, измеряющего среднее значение амплитуды импульсов, записываются самописцем").

В методе анализа амплитуд импульсов, описанном выше, отбрасываются все импульсы, за исключением тех, амплитуды которых лежат между V 0 и V 0 - -dV. При небольшой частоте повторения импульсов и при заданных статистических ошибках это сильно увеличивает время, необходимое для измерений. Рационализация метода заключается в применении большого числа так называемых одноканальных анализаторов, пороговые напряжения которых подобраны таким образом, что перекрывается вся область спектра, интересующая исследователя. Описание таких многоканальных анализаторов можно найти у Хигинботэма.

1.8 Применение сцинтилляционных счетчиков

Достоинства сцинтилляционного счётчика: высокая эффективность регистрации различных частиц; быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам сцинтилляционные счётчики широко применяется в ядерной физике (например, для измерения времени жизни возбуждённых состояний ядер, измерение сечения деления, регистрация осколков деления газовыми сцинтилляционными счётчиками), физике элементарных частиц и космических лучей (например, экспериментальное обнаружение нейтрино), в промышленности (гамма-дефектоскопия, радиационный контроль), дозиметрии (измерение потоков γ - излучений, испускаемых человеком и другими живыми организмами), радиометрии, геологии, медицине и т. д. Недостатки сцинтилляционного счётчика: малая чувствительность к частицам низких энергий (1 кэВ ), невысокая разрешающая способность по энергии.

Для регистрации заряженных частиц сцинтилляционными счётчиком пригодны почти все фосфоры. Более удобны твёрдые фосфоры типа органических монокристаллов или пластиков. Основная трудность, возникающая при регистрации заряженных частиц и особенно тяжёлых, обеспечение ввода частиц в фосфор. Фосфор, как правило, упаковывают в металлический контейнер, сквозь стенки которого частицы могут не пройти. Поэтому тяжёлые частицы обычно регистрируют более простыми детекторами – ионизационной камерой или пропорциональным счётчиком. Электроны регистрируют сцинтилляционными счётчиками в тех случаях, когда требуется хорошее разрешающее время. Основными фосфорами обычно являются органические монокристаллы антрацена, стильбена или пластики. Эффективность регистрации заряженных частиц сцинтилляционным счётчиком близка к 100%.

Сцинтилляционные счётчики используют особенно широко для регистрации γ -излучения. Кроме хорошего разрешающего времени такой детектор обладает значительно большей, чем счётчик ГейгераМюллера, эффективностью к γ -квантам. В некоторых случаях удаётся обеспечить почти 100%-ную регистрацию γ -излучения. Эффективность сцинтилляционного счётчика к γ -квантам зависит от материала и толщины фосфора. Взаимодействие γ -квантов с веществом фосфора определяется плотностью электронов и энергией γ -квантов. Поэтому наиболее эффективно γ -излучение регистрируется сцинтилляционными счётчиками с фосфорами, имеющими большую плотность и высокий средний порядковый номер Z. К таким фосфорам относятся неорганические монокристаллы NaI(Tl), CsI(Tl), KI(Tl). С меньшей эффективностью γ - излучение регистрируется жидкими фосфорами и пластиками.

- Принцип работы сцинтилляционного счетчика

- Сцинтилляторы

- Фотоэлектронные умножители

- Конструкции сцинтилляционных счетчиков

- Свойства сцинтилляционных счетчиков

- Примеры использования сцинтилляционных счетчиков

- Список использованной литературы

СЦИНТИЛЛЯЦИОННЫЕ СЧЕТЧИКИ

Метод регистрации заряженных частиц с помощью счета вспышек света, возникающих при попадании этих частиц на экран из сернистого цинка (ZnS), является одним из первых методов регистрации ядерных излучений.

Еще в 1903 г. Крукс и другие показали, что если рассматривать экран из сернистого цинка, облучаемый a-частицами, через увеличительное стекло в темном помещении, то на нем можно заметить появление отдельных кратковременных вспышек света - сцинтилляций. Было установлено, что каждая из этих сцинтилляций создается отдельной a-частицей, попадающей на экран. Круксом был построен простой прибор, названный спинтарископом Крукса, предназначенный для счета a-частиц.

Визуальный метод сцинтилляций был использован в дальнейшем в основном для регистрации a-частиц и протонов с энергией в несколько миллионов электронвольт. Отдельные быстрые электроны регистрировать не удалось, так как они вызывают очень слабые сцинтилляции. Иногда при облучении электронами сернисто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов.

Гамма-лучи никаких вспышек на экране не вызывают, создавая лишь общее свечение. Это позволяет регистрировать a-частицы в присутствии сильного g-излучения.

Визуальный метод сцинтилляций позволяет регистрировать очень небольшое число частиц в единицу времени. Наилучшие условия для счета сцинтилляций получаются тогда, когда их число лежит между 20 и 40 в минуту. Конечно, метод сцинтилляций является субъективным, и результаты в той или иной мере зависят от индивидуальных качеств экспериментатора.

Несмотря на недостатки, визуальный метод сцинтилляций сыграл огромную роль в развитии ядерной и атомной физики. С помощью него Резерфорд регистрировал a-частицы при их рассеянии на атомах. Именно эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их a-частицами, т.е. первое искусственное расщепление ядра.

Визуальный метод сцинтилляций имел большое значение вплоть до тридцатых годов, когда появление новых методов регистрации ядерных излучений заставило на некоторое время забыть его. Сцинтилляционный метод регистрации возродился в конце сороковых годов XX века на новой основе. К этому времени были разработаны фотоэлектронные умножители (ФЭУ), позволяющие регистрировать очень слабые вспышки света. Были созданы сцинтилляционные счетчики, с помощью которых можно увеличить скорость счета в 108 и даже более раз по сравнению с визуальным методом, а также можно регистрировать и анализировать по энергии как заряженные частицы, так и нейтроны и g-лучи.

§ 1. Принцип работы сцинтилляционного счетчика

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фосфора с ФЭУ производится через специальную оптическую систему (светопровод).

Принцип работы сцинтилляционного счетчика состоит в следующем. Заряженная частица, попадая в сцинтиллятор, производит ионизацию и возбуждение его молекул, которые через очень короткое время (10-6- 10-9 сек) переходят в стабильное состояние, испуская фотоны. Возникает вспышка света (сцинтилляция). Некоторая часть фотонов попадает на фотокатод ФЭУ и выбивает из него фотоэлектроны. Последние под действием приложенного к ФЭУ напряжения фокусируются и направляются на первый электрод (динод) электронного умножителя. Далее в результате вторичной электронной эмиссии число электронов лавинообразно увеличивается, и на выходе ФЭУ появляется импульс напряжения, который затем уже усиливается и регистрируется радиотехнической аппаратурой.

Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.

В качестве фосфоров используются:

Органические кристаллы,

Жидкие органические сцинтилляторы,

Твердые пластмассовые сцинтилляторы,

Газовые сцинтилляторы.

Основными характеристиками сцинтилляторов являются: световой выход, спектральный состав излучения и длительность сцинтилляций.

При прохождении заряженной частицы через сцинтиллятор в нем возникает некоторое число фотонов с той или иной энергией. Часть этих фотонов будет поглощена в объеме самого сцинтиллятора, и вместо них будут испущены другие фотоны с несколько меньшей энергией. В результате процессов реабсорбции наружу будут выходить фотоны, спектр которых характерен для данного сцинтиллятора.

Световым выходом или конверсионной эффективностью сцинтиллятора c называется отношение энергии световой вспышки , выходящей наружу, к величине энергии Е заряженной частицы, потерянной в сцинтилляторе,


где - среднее число фотонов, выходящих наружу, - средняя энергия фотонов. Каждый сцинтиллятор испускает не моноэнергетические кванты, а сплошной спектр, характерный для данного сцинтиллятора.

Очень важно, чтобы спектр фотонов, выходящих из сцинтиллятора, совпадал или хотя бы частично перекрывался со спектральной характеристикой ФЭУ.

Степень перекрытия внешнего спектра сцинтилляции со спектральной характеристикой. данного ФЭУ определяется коэффициентом согласования

где - внешний спектр сцинтиллятора или спектр фотонов, выходящих наружу из сцинтиллятора. На практике при сравнении сцинтилляторов, сочетаемых с данными ФЭУ, вводят понятие сцинтилляционной эффективности, которая определяется следующим выражением:


где I 0- максимальное значение интенсивности сцинтилляции; t - постоянная времени затухания, определяемая как время, в течение которого интенсивность сцинтилляции уменьшается в е раз.

Число фотонов света n , испущенных за время t после попадания регистрируемой частицы, выражается формулой


где - полное число фотонов, испущенных в процессе сцинтилляции.

Процессы люминесценции (высвечивания) фосфора делят на два вида: флуоресценции и фосфоресценции. Если высвечивание происходит непосредственно во время возбуждения или в течение промежутка времени порядка 10-8сек, то процесс называется флуоресценцией. Интервал 10-8сек выбран потому, что он по порядку величины равен времени жизни атома в возбужденном состоянии для так называемых разрешенных переходов.

Хотя спектры и длительность флуоресценции не зависят от вида возбуждения, выход же флуоресценции существенно зависит от него. Так при возбуждении кристалла a-частицами выход флуоресценции почти на порядок меньше, чем при фотовозбуждении.

Под фосфоресценцией понимают люминесценцию, которая продолжается значительное время после прекращения возбуждения. Но основное различие между флуоресценцией и фосфоресценцией заключается не в длительности послесвечения. Фосфоресценция кристаллофосфоров возникает при рекомбинации электронов и дырок, возникших при возбуждении. В некоторых кристаллах возможно затягивание послесвечения за счет того, что электроны и дырки захватываются «ловушками», из которых они могут освободиться, лишь получив дополнительную необходимую энергию. Отсюда очевидна зависимость длительности фосфоресценции от температуры. В случае сложных органических молекул фосфоресценция связана с пребыванием их в метастабильном состоянии, вероятность перехода из которого в основное состояние может быть малой. И в этом случае будет наблюдаться зависимость скорости затухания фосфоресценции от температуры.

§ 2. Сцинтилляторы

Неорганические сцинтилляторы . Неорганические сцинтилляторы представляют собой кристаллы неорганических солей. Практическое применение в сцинтилляционной технике имеют главным образом галоидные соединения некоторых щелочных металлов.

Процесс возникновения сцинтилляций можно представить при помощи зонной теории твердого тела. В отдельном атоме, не взаимодействующем с другими, электроны находятся на вполне определенных дискретных энергетических уровнях. В твердом теле атомы находятся на близких расстояниях, и их взаимодействие достаточно сильно. Благодаря этому взаимодействию уровни внешних электронных оболочек расщепляются и образуют зоны, отделенные друг от друга запрещенными зонами. Самой внешней разрешенной зоной, заполненной электронами, является валентная зона. Выше ее располагается свободная зона - зона проводимости. Между валентной зоной и зоной проводимости находится запрещенная зона, энергетическая ширина которой составляет несколько электронвольт.

Если в кристалле имеются какие-либо дефекты, нарушения решетки или примесные атомы, то в этом случае возможно появление энергетических электронных уровней, расположенных в запрещенной зоне. При внешнем воздействии, например при прохождении через кристалл быстрой заряженной частицы, электроны могут переходить из валентной зоны в зону проводимости. В валентной зоне останутся свободные места, обладающие свойствами положительно заряженных частиц с единичным зарядом и называемые дырками.

Описанный процесс и является процессом возбуждения кристалла. Возбуждение снимается путем обратного перехода электронов из зоны проводимости в валентную зону, происходит рекомендация электронов и дырок. Во многих кристаллах переход электрона из зоны проводимости в валентную происходит через промежуточные люминесцентные центры, уровни которых находятся в запрещенной зоне. Указанные центры обусловливаются наличием в кристалле дефектов или примесных атомов. При переходе электронов в две стадии испускаются фотоны с энергией, меньшей ширины запрещенной зоны. Для таких фотонов вероятность поглощения в самом кристалле мала и поэтому световой выход для него много больше, чем для чистого, беспримесного кристалла.

На практике, для увеличения светового выхода неорганических сцинтилляторов вводятся специальные примеси других элементов, называемых активаторами. Так, например, в кристалл йодистого натрия в качестве активатора вводится таллий. Сцинтиллятор, построенный на основе кристалла NaJ(Tl), обладает большим световым выходом. Сцинтиллятор NaJ(Тl) имеет значильтельные преимущества по сравнению с газонаполненными счетчиками:

большую эффективность регистрации g-лучей (с большими кристаллами эффективность регистрации может достигать десятков процентов);

малую длительность сцинтилляции (2,5 10-7 сек);

линейную связь между амплитудой импульса и величиной энергии, потерянной заряженной частицей.

Последнее свойство требует пояснений. Световой выход сцинтиллятора имеет некоторую зависимость от удельных потерь энергии заряженной частицы.


При очень больших величинах возможны значительные нарушения кристаллической решетки сцинтиллятора, которые приводят к возникновению локальных центров тушения. Это обстоятельство может привести к относительному уменьшению светового выхода. Действительно, экспериментальные факты свидетельствуют о том, что для тяжелых частиц выход нелинеен, а линейная зависимость начинает проявляться только с энергии в несколько миллионов электронвольт. На рис.1 приведены кривые зависимости cот Е: кривая 1 для электронов, кривая 2для aчастиц.

Кроме указанных щелочно-галоидных сцинтилляторов иногда используются другие неорганические кристаллы: ZnS (Tl), CsJ (Tl), CdS (Ag), CaWO4, CdWO4 и др.

Органические кристаллические сцинтилляторы. Молекулярные силы связи в органических кристаллах малы по сравнению с силами, действующими в неорганических кристаллах. Поэтому взаимодействующие молекулы практически не возмущают энергетические электронные уровни друг у друга и процесс люминесценции органического кристалла является процессом, характерным для отдельных молекул. В основном электронном состоянии молекула имеет несколько колебательных уровней. Под воздействием регистрируемого излучения молекула переходит в возбужденное электронное состояние, которому также соответствует несколько колебательных уровней. Возможны также ионизация и диссоциация молекул. В результате рекомбинации ионизованной молекулы, она, как правило, образуется в возбужденном состоянии. Первоначально возбужденная молекула может находиться на высоких уровнях возбуждения и через короткое время (~10-11сек) испускает фотон высокой энергии. Этот фотон поглощается другой молекулой, причем часть энергии возбуждения этой молекулы может быть израсходована на тепловое движение и испущенный впоследствии фотон будет обладать уже меньшей энергией по сравнениюс предыдущим. После нескольких циклов испускания и поглощения образуются молекулы, находящиеся на первом возбужденномуровне; они испускают фотоны, энергия которых может оказаться уже недостаточной для возбуждения других молекул и, таким образом, кристалл будет прозрачным для возникающего излучения.


Рис. 2. Зависимость светового выхода

антрацена от энергии для различных частиц.

Благодаря тому, что большая часть энергии возбуждения расходуется на тепловое движение, световой выход (конверсионная эффективность) кристалла сравнительно невелик и составляет несколько процентов.

Для регистрации ядерных излучений наибольшее распространение получили следующие органические кристаллы: антрацен, стильбен, нафталин. Антрацен обладаетдостаточно большим световым выходом (~4%) и малым временем высвечивания (3 10-8сек). Но при регистрации тяжелых заряженных частиц линейная зависимость интенсивности сцинтилляции наблюдается лишь при довольно больших энергиях частиц.

На рис. 2 приведены графики зависимости светового выхода c(в произвольных единицах) от энергии электронов 1, протонов 2, дейтонов 3 и a-частиц 4.

Стильбен хотя и обладает несколько меньшим световым выходом, чем антрацен, нозато длительность сцинтилляции у него значительно меньше (7 10-9сек), чем у антрацена, что позволяет использовать его в тех экспериментах, где требуется регистрация очень интенсивного излучения.

Пластмассовые сцинтилляторы. Пластмассовые сцинтилляторы представляют собой твердые растворы флуоресцирующих органических соединений в подходящем прозрачном веществе. Например, растворы антрацена или стильбена в полистироле, или плексигласе. Концентрации растворенного флуоресцирующего вещества обычно малы и составляют несколько десятых долей процента или несколько процентов.

Так как растворителя много больше, чем растворенного сцин-тиллятора, то, естественно, регистрируемая частица производит в основном возбуждение молекул растворителя. Энергия возбуждения в дальнейшем передается молекулам сцинтиллятора. Очевидно, что спектр испускания растворителя должен быть более жестким, чем спектр поглощения растворенного вещества, или по крайней мере совпадать с ним. Экспериментальные факты показывают, что энергия возбуждения растворителя передается молекулам сцинтиллятора за счет фотонного механизма, т. е. молекулы растворителя испускают фотоны, которые затем поглощаются молекулами растворенного вещества. Возможен и другой механизм передачи энергии. Так как концентрация сцинтиллятора мала, то раствор оказывается практически прозрачным для возникшего излучения сцинтиллятора.

Пластмассовые сцинтилляторы имеют значительные преимущества по сравнению с органическими кристаллическими сцинтилляторами:

Возможность изготовления сцинтилляторов очень больших размеров;

Возможность введения в сцинтиллятор смесителей спектра для достижения лучшего согласования его спектра люминесценции со спектральной характеристикой фотокатода;

Возможность введения в сцинтиллятор различных веществ, необходимых в специальных экспериментах (например, при исследовании нейтронов);

Возможность использования пластмассовых сцинтилляторов в вакууме;

малое время высвечивания (~3 10-9сек). Наибольшим световым выходом обладают пластмассовые сцинтилляторы, приготовленные растворением антрацена в полистироле. Хорошими свойствами обладает также раствор стильбена в полистироле.

Жидкие органические сцинтилляторы. Жидкие органические сцинтилляторы представляют собой растворы органических сцинтиллирующих веществ в некоторых жидких органических растворителях.

Механизм флуоресценции в жидких сцинтилляторах аналогичен механизму, происходящему в твердых растворах-сцинтилляторах.

Наиболее подходящими растворителями оказались ксилол, толуол и фенилциклогексан, а сцинтиллирующими веществами р-терфенил, дифенилоксазол и тетрафенилбутадиен.Наибольшим световым выходом обладает сцинтиллятор, изготовленный при растворении

р-терфенила в ксилоле при концентрации растворенного вещества 5 г/л.

Основные достоинства жидких сцинтилляторов:

Возможность изготовления больших объемов;

Возможность введения в сцинтиллятор веществ, необходимых в специальных экспериментах;

Малая длительность вспышки ( ~3 10-9сек).

Газовые сцинтилляторы. При прохождении заряженных частиц через различные газы в них наблюдалось появление сцинтилляций. Наибольшим световым - выходом обладают тяжелые благородные газы (ксенон и криптон). Большим световым выходом обладает также смесь ксенона и гелия. Присутствие в гелии 10% ксенона обеспечивает световой выход, даже больший, чем у чистого ксенона (рис. 3). Ничтожно малые примеси других газов резко уменьшают интенсивность сцинтилляций в благородных газах.


Рис. 3. Зависимость светового выхода газового

сцинтиллятора от соотношения смеси гелия и ксенона.

Экспериментально было показано, что длительность вспышек в благородных газах мала (10-9 -10-8 сек), а интенсивность вспышек в широком диапазоне пропорциональна потерянной энергии регистрируемых частиц и не зависит от их массы и заряда. Газовые сцинтилляторы обладают малой чувствительностью к g-излучению.

Основная часть спектра люминесценции лежит в области далекого ультрафиолета, поэтому для приведения в соответствие со спектральной чувствительностью ФЭУ используются светопреобразователи. Последние должны обладать высоким коэффициентом конверсии, оптической прозрачностью в тонких слоях, низкой упругостью насыщенных паров, а также механической и химической устойчивостью. В качестве материалов для светопреобразователей в основном используются различные органические соединения, например:

дифенилстильбен (эффективность преобразования около 1);

P1 p’ -кватерфенил (~1);

антрацен (0,34) и др.

Светопреобразователь наносится тонким слоем на фотокатод ФЭУ. Важным параметром светопреобразователя является его время высвечивания. В этом отношении органические преобразователи являются вполне удовлетворительными (10-9сек или несколько единиц на 10-9сек). Для увеличения светосбора внутренние стенки камеры сцинтиллятора обычно покрываются светоотражателями (MgO, эмаль на основе окиси титана, фторопласт, окись алюминия и др.).

§ 3. Фотоэлектронные умножители

Основными элементами ФЭУ являются: фотокатод, фокусирующая система, умножительная система (диноды), анод (коллектор). Все эти элементы располагаются в стеклянном баллоне, откаченном до высокого вакуума (10-6мм рт.ст.).

Для целей спектрометрии ядерных излучений фотокатод обычно располагается на внутренней поверхности плоской торцевой части баллона ФЭУ. В качестве материала фотокатода выбирается вещество достаточно чувствительное к свету, испускаемому сцинтилляторами. Наибольшее распространение получили сурьмяно-цезиевые фотокатоды, максимум спектральной чувствительности которых лежит при l= 3900¸4200 А, что соответствует, максимумам спектров люминесценции многих сцинтилляторов.

Рис. 4. Принципиальная схема ФЭУ.

Одной из характеристик фотокатода является его квантовый выход в, т. е. вероятность вырывания фотоэлектрона фотоном, попавшим на фотокатод. Величина e может достигать 10-20%. Свойства фотокатода характеризуются также интегральной чувствительностью, представляющей собой отношение фототока (мка) к падающему на фотокатод световому потоку (лм).

Фотокатод наносится на стекло в виде тонкого полупрозрачного слоя. Существенна толщина этого слоя. С одной стороны, для большого поглощения света она должна быть значительной, с другой стороны, возникающие фотоэлектроны, обладая очень малой энергией не смогут выходить из толстого слоя и эффективный квантовый выход может оказаться малым. Поэтому подбирается оптимальная толщина фотокатода. Существенно также обеспечить равномерную толщину фотокатода, чтобы его чувствительность была одинакова на всей площади. В сцинтилляционной g-спектрометрии часто необходимо использовать твердые сцинтилляторы больших размеров, как по толщине, так и по диаметру. Поэтому возникает необходимость изготавливать ФЭУ с большими диаметрами фотокатодов. В отечественных ФЭУ фотокатоды делаются с диаметром от нескольких сантиметров до 15¸20 см. фотоэлектроны, выбитые из фотокатода, должны быть сфокусированы на первый умножительный электрод. Для этой цели используется система электростатических линз, которые представляют собой ряд фокусирующих диафрагм. Для получения хороших временных характеристик ФЭУ важно создать такую фокусирующую систему, чтобы электроны попадали на первый динод с минимальным временным разбросом. На рис.4 приведено схематическое устройство фотоэлектронного умножителя. Высокое напряжение, питающее ФЭУ, отрицательным полюсом присоединяется к катоду и распределяется между всеми электродами. Разность потенциалов между катодом и диафрагмой обеспечивает фокусировку фотоэлектронов на первый умножающий электрод. Умножающие электроды носят название динодов. Диноды изготовляются из материалов, коэффициент вторичной эмиссии которых больше единицы (s>1). В отечественных ФЭУ диноды изготовляются либо в виде корытообразной формы (рис. 4), либо в виде жалюзи. В обоих случаях диноды располагаются в линию. Возможно также и кольцеобразное расположение динодов. ФЭУ с кольцеобразной системой динодов обладают лучшими временными характеристиками. Эмитирующим слоем динодов является слой из сурьмы и цезия или слой из специальных сплавов. Максимальное значение s для сурьмяно-цезиевых эмиттеров достигается при энергии электронов 350¸400 эв, а для сплавных эмиттеров - при 500¸550 эв. В первом случае s= 12¸14, во втором s=7¸10. В рабочих режимах ФЭУ значение sнесколько меньше. Достаточно хорошим коэффициентом вторичной эмиссии является s= 5.

Фотоэлектроны, сфокусированные на первый динод, выбивают из него вторичные электроны. Число электронов, покидающих первый динод, в несколько раз больше числа фотоэлектронов. Все они направляются на второй динод, где также выбивают вторичные электроны и т. д., от динода к диноду, число электронов увеличивается в s раз.

При прохождении всей системы динодов поток электронов возрастает на 5-7 порядков и попадает на анод - собирающий электрод ФЭУ. Если ФЭУ работает в токовом режиме, то в цепь анода включаются приборы, усиливающие и измеряющие ток. При регистрации ядерных излучений обычно необходимо измерять число импульсов, возникающих под воздействием ионизирующих частиц, а также амплитуду этих импульсов. В этих случаях в цепь анода включается сопротивление, на котором и возникает импульс напряжения.

Важной характеристикой ФЭУ является коэффициент умножения М. Если значение s для всех динодов одинаково (при полном сборе электронов на динодах), а число динодов равно n , то


A и B постоянные, u – энергия электронов. Коэффициент умножения М не равен коэффициенту усиления М" , который характеризует отношение тока на выходе ФЭУ к току, выходящему из катода

М" =СМ,

где С<1 - коэффициент сбора электронов, характеризующий эффективность сбора фотоэлектронов на первый динод.

Очень важным является постоянство коэффициента усиления М" ФЭУ как во времени, так и при изменении числа электронов, выходящих из фото катода. Последнее обстоятельство позволяет использовать сцинтилляционные счетчики в качестве спектрометров ядерных излучений.

О помехах в фотоумножителях. В сцинтилляционных счетчиках даже при отсутствии внешнего облучения возможно появление большого числа импульсов на выходе ФЭУ. Эти импульсы обычно имеют небольшие амплитуды и носят название шумовых. Наибольшее число шумовых импульсов обусловливается появлением термоэлектронов из фотокатода или даже из первых динодов. Для уменьшения шумов ФЭУ часто используется его охлаждение. При регистрации излучений, создающих большие по амплитуде импульсы, в регистрирующую схему включается дискриминатор, не пропускающий шумовые импульсы.


Рис. 5. Схема для подавления шумов ФЭУ.

1. При регистрации импульсов, амплитуда которых сравнима с шумовыми, рационально использовать один сцинтиллятор с двумя ФЭУ, включенными в схему совпадений (рис. 5). В этом случае происходит временная селекция импульсов, возникших от регистрируемой частицы. В самом деле, вспышка света, возникшая в сцинтилляторе от регистрируемой частицы, попадет одновременно на фтокатоды обоих ФЭУ, и на их выходе одновременно появятся импульсы, заставляющие сработать схему совпадений. Частица будет зарегистрирована. Шумовые же импульсы в каждом из ФЭУ появляются независимо друг от друга и чаще всего не будут зарегистрированы схемой совпадений. Такой способ позволяет уменьшать собственный фон ФЭУ на 2-3 порядка.

Число шумовых импульсов растет с ростом приложенного напряжения, сначала довольно медленно, затем возрастание резко увеличивается. Причиной этого резкого возрастания фона является автоэлектронная эмиссия с острых краев электродов и возникновение обратной ионной связи между последними динодами и фотокатодом ФЭУ.

В районе анода, где плотность тока наибольшая, возможно возникновение свечения как остаточного газа, так и конструктивных материалов. Возникшее слабое свечение, а также обратная ионная связь обусловливают появление так называемых сопровождающих импульсов, отстоящих по времени от основных на 10-8 ¸10-7сек.

§ 4. Конструкции сцинтилляционных счетчиков

К конструкциям сцинтилляционных счетчиков предъявляются следующие требования:

Наилучший сбор света сцинтилляций на фотокатоде;

Равномерное распределение света по фотокатоду;

Затемнение от света посторонних источников;

Отсутствие влияния магнитных полей;

Стабильность коэффициента усиления ФЭУ.

При работе со сцинтилляционными счетчиками всегда необходимо добиваться наибольшего отношения амплитуды импульсов сигнала к амплитуде шумовых импульсов, что принуждает оптимально использовать интенсивности вспышек, возникающих в сцинтилляторе. Обычно сцинтиллятор упаковывают в металлический контейнер, закрываемый с одного конца плоским стеклом. Между контейнером и сцинтиллятором размещается слой материала, отражающего свет и способствующего наиболее полному его выходу. Наибольшей отражательной способностью обладают окись магния (0,96), двуокись титана (0,95), гипс (0,85-0,90), используется также алюминий (0,55-0,85).

Особое внимание должно быть обращено на тщательную упаковку гигроскопичных сцинтилляторов. Так, например, наиболее часто используемый фосфор NaJ (Tl) очень гигроскопичен и при проникновении в него влаги желтеет и теряет свои сцинтилляционные свойства.

Пластмассовые сцинтилляторы нет необходимости упаковывать в герметические контейнеры, но для увеличения светосбора можно окружить сцинтиллятор отражателем. Все твердые сцинтилляторы должны иметь на одном из торцов выходное окно, которое и сочленяется с фотокатодом ФЭУ. В месте сочленения могут быть значительные потери интенсивности света сцинтилляции. Для избежания этих потерь между сцинтиллятором и ФЭУ вводится канадский бальзам, минеральные или силиконовые масла и создается оптический контакт.

В некоторых экспериментах, например при измерениях в вакууме, в магнитных полях, в сильных полях ионизирующих излучений сцинтиллятор не может быть помещен непосредственно на фотокатод ФЭУ. В таких случаях для передачи света от сцинтиллятора на фотокатод используется светопровод. В качестве светопроводов применяются полированные стержни из прозрачных материалов - таких, как люсит, плексиглас, полистирол, а также металлические или плексигласовые трубки, заполненные прозрачной жидкостью. Потери света в светопроводе зависят от его геометрических размеров и от материала. В некоторых экспериментах необходимо использовать изогнутые светопроводы.

Лучше применять светопроводы с большим радиусом кривизны. Светопроводы позволяют также сочленять сцинтилляторы и ФЭУ разных диаметров. При этом используются конусообразные светопроводы. Сочленение ФЭУ с жидким сцинтиллятором производится либо через светопровод, либо непосредственным контактом с жидкостью. На рис.6 приведен пример сочленения ФЭУ с жидким сцинтиллятором. В различных режимах работы на ФЭУ подается напряжение от 1000 до 2500в. Так как коэффициент усиления ФЭУ очень резко зависит от напряжения, то источник питающего тока должен быть хорошо стабилизирован. Кроме того, возможно осуществление самостабилизации.

Питание ФЭУ производится с помощью делителя напряжения, который позволяет подавать на каждый электрод соответствующий потенциал. Отрицательный полюс источника питания подключается к фотокатоду и к одному из концов делителя. Положительный полюси другой конец делителя заземляются. Сопротивления делителя подбираются таким образом, чтобы был осуществлен оптимальный режим работы ФЭУ. Для большей стабильности ток через делитель должен на порядок превышать электронные токи, идущие через ФЭУ.


Рис. 6. Сочленение ФЭУ с жидким сцинтиллятором.

1-жидкий сцинтиллятор;

2- ФЭУ;

3- светозащитный кожух.

При работе сцинтилляционного счетчика в импульсном режиме на выходе ФЭУ возникают короткие (~10-8сек) импульсы, амплитуда которых может составлять несколько единиц или несколько десятков вольт. При этом потенциалы на последних динодах могут испытывать резкие изменения, так как ток через делитель не успевает восполнить заряд, уносимый с каскада электронами. Чтобы избежать таких колебаний потенциалов, несколько последних сопротивлений делителя шунтируются емкостями. За счет подбора потенциалов на динодах создаются благоприятные условия для сбора электронов на этих динодах, т.е. осуществляется определенная электроннооптическая система, соответствующая оптимальному режиму.

В электроннооптической системе траектория электрона не зависит от пропорционального изменения потенциалов на всех электродах, образующих данную электроннооптическую систему. Так и в умножителе при изменении напряжения питания изменяется лишь коэффициент усиления его, но электроннооптические свойства остаются неизменными.

Принепропорциональном изменении потенциалов на динодах ФЭУ условия фокусировки электронов на участке, где нарушена пропорциональность, изменяются. Это обстоятельство и используется для самостабилизации коэффициента усиления ФЭУ. Для этой цели потенциал

Рис. 7. Часть схемы делителя.

одного из динодов по отношению к потенциалу предыдущего динода задается постоянным, либо с помощью дополнительной батареи, либо с помощью дополнительно стабилизированного делителя. На рис.7 приведена часть схемы делителя, где между динодами D5 и D6 включена дополнительная батарея( Uб = 90 в). Для получения наилучшего эффекта самостабилизации необходимо подобрать величину сопротивленияR". ОбычноR" большеR в 3- 4 раза.

§ 5. Свойства сцинтилляционных счетчиков

Сцинтилляционные счетчики обладают следующими достоинствами.

Высокая разрешающая способность по времени. Длительность импульса в зависимости от используемых сцинтилляторов простирается от 10-6 до 10-9сек, т.е. на несколько порядков меньше, чем у счетчиков с самостоятельным разрядом, что позволяет осуществлять намного большие скорости счета. Другой важной временной характеристикой сцинтилляционных счетчиков является малая величина запаздывания импульса после прохождения регистрируемой частицы через фосфор (10-9 -10-8сек). Это позволяет использовать схемы совпадений с малым разрешающим временем (<10-8сек) и, следовательно, производить измерения совпадений при много больших нагрузках по отдельным каналам при малом числе случайных совпадений.

Высокая эффективность регистрации g -лучей и нейтронов. Для регистрации g-кванта или нейтрона необходимо, чтобы они прореагировали с веществом детектора; при этом возникшая вторичная заряженная частица должна быть зарегистрирована детектором. Очевидно, что чем больше находится вещества на пути g-лучей или нейтронов, тем большей будет вероятность их поглощения, тем большей будет эффективность их регистрации. В настоящее время при использовании больших сцинтилляторов добиваются эффективности регистрации g-лучей в несколько десятков процентов. Эффективность регистрации нейтронов сцинтилляторами со специально введенными веществами (10 В,6 Li и др.) также намного превышает эффективность регистрации их с помощью газоразрядных счетчиков.

Возможность энергетического анализа регистрируемого излучения. В самом деле, для легких заряженных частиц (электроны) интенсивность вспышки в сцинтилляторе пропорциональна энергии, потерянной частицей в этом сцинтилляторе.

С помощью сцинтилляционных счетчиков, присоединенных к амплитудным анализаторам, можно изучать спектры электронов и g-лучей. Несколько хуже обстоит дело с изучением спектров тяжелых заряженных частиц (a-частицы и др.), создающих в сцинтилляторе большую удельную ионизацию. В этих случаях пропорциональность интенсивности вспышки потерянной энергии наблюдается не при всяких энергиях частиц и проявляется только при значениях энергии, больших некоторой величины. Нелинейная связь амплитуд импульсов с энергией частицы различна для различных фосфоров и для различных типов частиц. Это иллюстрируется графиками на рис.1 и 2.

Возможность изготовления сцинтилляторов очень больших геометрических размеров. Это означает возможность регистрации и энергетического анализа частиц очень больших энергий (космические лучи), а также частиц, слабо взаимодействующих с веществом (нейтрино).

Возможность введения в состав сцинтилляторов веществ, с которыми с большим сечением взаимодействуют нейтроны. Для регистрации медленных нейтронов используют фосфоры LiJ(Tl), LiF, LiBr. При взаимодействии медленных нейтронов с6 Li идет реакция6 Li(n,a)3 Н, в которой выделяется энергия в 4,8 Мэв.

§ 6. Примеры использования сцинтилляционных счетчиков

Измерение времен жизни возбужденных состояний ядер. При радиоактивном распаде или в различных ядерных реакциях образующиеся ядра часто оказываются в возбужденном состоянии. Изучение квантовых характеристик возбужденных состояний ядер является одной из главных задач ядерной физики. Очень важной характеристикой возбужденного состояния ядра является время его жизниt. Знание этой величины позволяет получать многие сведения о структуре ядра.

Атомные ядра могут находиться в возбужденном состоянии различные времена. Для измерения этих времен существуют различные методы. Сцинтилляционные счетчики оказались очень удобными для измерения времен жизни уровней ядер от нескольких секунд до очень малых долей секунды. В качестве примера использования сцинтилляционных счетчиков мы рассмотрим метод задержанных совпадений. Пусть ядро A (см. рис.10) путем b-распада превращается в ядро В в возбужденном состоянии, которое избыток своей энергии отдает на последовательное испускание двух g-квантов(g1 ,g2). Требуется определить время жизни возбужденного состоянияI . Препарат, содержащий изотоп A, устанавливается между двумя счетчиками с кристаллами NaJ(Tl) (рис.8). Импульсы, возникшие на выходе ФЭУ, подаются на схему быстрых совпадений с разрешающим временем ~10-8 -10-7сек. Кроме того, импульсы подаются на линейные усилители и далее на амплитудные анализаторы. Последние настраиваются таким образом, что они пропускают импульсы определенной амплитуды. Для нашей цели, т.е. для цели измерения времени жизни уровня I (см. рис. 10), амплитудный анализаторAAI должен пропускать только импульсы, соответствующие энергии квантов g1 а анализаторAAII - g2.

Рис.8. Принципиальная схема для определения

времени жизни возбужденных состояний ядер.

Далее импульсы с анализаторов, а также с быстрой схемы совпадений подаются на медленную (t~10-6сёк) схему тройных совпадений. В эксперименте изучаются зависимость числа тройных совпадений от величины временной задержки импульса, включенной в первый канал схемы быстрых совпадений. Обычно задержка импульса осуществляется с помощью так называемой переменной линии задержки ЛЗ (рис.8).

Линия задержки должна включаться именно в тот канал, в котором регистрируется квантg1, так как он испускается раньше кванта g2. В результате эксперимента строится полулогарифмический график зависимости числа тройных совпадений от времени задержки (рис.9), и уже по нему определяется время жизни возбужденного уровня I (так же, как это делается при определении периода полураспада с помощью одиночного детектора).

Используя сцинтилляционные счетчики с кристаллом NaJ(Tl) и рассмотренную схему быстро-медленных совпадений, можно измерять времена жизни 10-7 -10-9сек. Если же использовать более быстрые органические сцинтилляторы, то можно измерять и меньшие времена жизни возбужденных состояний (до 10-11сек ).


Рис.9. Зависимость числа совпадений от величины задержки.

Гамма-дефектоскопия. Ядерные излучения, обладающие большой проникающей способностью, все чаще применяются в технике для обнаружения дефектов в трубах, рельсах и других больших металлических блоках. Для этих целей используется источник g-излучения и детектор g-лучей. Наилучшим детектором в этом случае является сцинтилляционный счетчик, обладающий большой эффективностью регистрации. Источник излучения помещается в свинцовый контейнер, из которого через коллиматорное отверстие выходит узкий пучок g-лучей, освещающий трубу. С противоположной стороны трубы устанавливается сцинтилляционный счетчик. Источник и счетчик помещаются на подвижный механизм, позволяющий передвигать их вдоль трубы, а также поворачивать около ее оси. Проходя через материал трубы, пучок g-лучей будет частично поглощаться; если труба однородна, поглощение будет всюду одинаковым, и счетчик будет всегда регистрировать одно и то же число (в среднем) g-квантов в единицу времени, если же в каком-то месте трубы имеется раковина, то g-лучи в этом месте будут поглощаться меньше, скорость счета увеличится. Местоположение раковины будет обнаружено. Примеров подобного использования сцинтилляционных счетчиков можно привести много.

Экспериментальное обнаружение нейтрино. Нейтрино - самая загадочная из элементарных частиц. Практически все свойства нейтрино получены из косвенных данных. Современная теория b-распада предполагает, что масса нейтрино mn равна нулю. Некоторые эксперименты позволяютутверждать, что. Спин нейтрино равен 1/2, магнитный момент <10-9 магнетона Бора. Электрический заряд равен нулю. Нейтрино может преодолевать огромные толщи вещества, не взаимодействуя с ним. При радиоактивном распаде ядер испускаются два сорта нейтрино. Так, при позитронном распаде ядро испускает позитрон (античастица) и нейтрино (n-частица). При электронном распадеиспускается электрон (частица) и антинейтрино (`n-античастйца).

Создание ядерных реакторов, в которых образуется очень большое количество ядер с избытком нейтронов, вселило надежду на обнаружение антинейтрино. Все нейтронноизбыточные ядра распадаются с испусканием электронов, а следовательно, и антинейтрино. Вблизи ядерного реактора мощностью в несколько сотен тысяч киловатт поток антинейтрино составляет 1013см -2 · сек-1 - поток огромной плотности, и при выборе подходящего детектора антинейтрино можно было попытаться их обнаружить. Такая попытка была осуществлена Рейнесом и Коуэном в 1954 г. Авторы использовали следующую реакцию:

n + p ® n + e+ (1)

этой реакции частицами-продуктами являются позитрон и нейтрон, которые могут быть зарегистрированы.

Детектором и одновременно водородной мишенью служил жидкий сцинтиллятор, объемом ~1м3 , с высоким содержанием водорода, насыщенный кадмием. Позитроны, возникающие в реакции (1), аннигилировали в два g-кванта с энергией 511 кэв каждый и обусловливали появление первой вспышки сцинтиллятора. Нейтрон в течение нескольких микросекунд замедлялся и захватывался кадмием. При этом захвате кадмием испускалось несколько g-квантов с суммарной энергией около 9 Мэв. В результате в сцинтилляторе возникала вторая вспышка. Измерялись запаздывающие совпадения двух импульсов. Для регистрации вспышек жидкий сцинтиллятор окружался большим количеством ФЭУ.

Скорость счета запаздывающих совпадений составляла три отсчета в час. Из этих данных было получено, что сечение реакции (рис. 1) s = (1,1 ± 0,4)10 -43 см2 , что близко к расчетной величине.

В настоящее время жидкостные сцинтилляционные счетчики очень больших размеров используются во многих экспериментах, в частности в экспериментах по измерению потоков g-излучений, испускаемых человеком и другими живыми организмами.

Регистрация осколков деления. Для регистрации осколков деления оказались удобными газовые сцинтилляционные счетчики.

Обычно эксперимент по изучению сечения деления ставится следующим образом: слой изучаемого элемента наносится на какую-то подложку и облучается потоком нейтронов. Конечно, чем больше будет использоваться делящегося вещества, тем больше будет происходить актов деления. Но так как обычно делящиесявещества (например, трансурановые элементы) являются a-излучателями, то использование их в значительных количествах становится затруднительным из-за большого фона от a-частиц. И если акты деления изучаются с помощью импульсных ионизационных камер, то возможно наложение импульсов от a-частиц на импульсы, возникшие от осколков деления. Только прибор, обладающий лучшим временным разрешением, позволит использовать большие количества делящегося вещества без наложения импульсов друг на друга. В этом отношении газовые сцинтилляционные счетчики обладают значительным преимуществом по сравнению с импульсными ионизационными камерами, так как длительность импульсов у последних на 2-3 порядка больше, чем у газовых сцинтилляционных счетчиков. Амплитуды импульсов от осколков деления много больше, чем от a-частиц и поэтому могут быть легко отделены с помощью амплитудного анализатора.

Очень важным свойством газового сцинтилляционного счетчика является его низкая чувствительность к g-лучам, так как часто появление тяжелых заряженных частиц сопровождается интенсивным потоком g-лучей.

Люминесцентная камера. В 1952 г. советскими физиками Завойским и другими впервые было произведено фотографирование следов ионизирующих частиц в люминесцирующих веществах с помощью чувствительных электроннооптических преобразователей (ЭОП). Этот метод регистрации частиц, названный люминесцентной камерой, имеет высокую разрешающую способность по времени. Первые опыты были произведены при использовании кристалла CsJ (Tl).

В дальнейшем для изготовления люминесцентной камеры стали использовать пластмассовые сцинтилляторы в виде длинных тонких стерженьков (нитей). Нити укладываются в виде стопки рядами так, что нити в двух соседних рядах расположены под прямым углом друг к другу. Этим обеспечивается возможность стереоскопического наблюдения для воссоздания пространственной траектории частиц. Изображения от каждой из двух групп взаимно перпендикулярных нитей направляются на отдельные электроннооптические преобразователи. Нити играют также роль светопроводов. Свет дают только те нити, которые пересекает частица. Этот свет выходит через торцы соответствующих нитей, которые фотографируются. Изготовляются системы с диаметром отдельных нитей от 0,5 до 1,0 мм.

Литература :

1. Дж.Биркс. Сцинтилляционные счетчики. М., ИЛ, 1955.

2. В.О.Вяземский, И.И. Ломоносов, В.А. Рузин. Сцинтилляционный метод в радиометрии. М., Госатомиздат, 1961.

3. Ю.А. Егоров. Стинцилляционный метод спектрометрии гамма излучения и быстрых нейтронов. М., Атомиздат, 1963.

4. П.А. Тишкин. Эксперементальные методы ядерной физики(детекторы ядерных излучений).

Издательство Ленинградского Университета, 1970.

5 Г.С. Ландсберга. Элементарный учебник физики (том 3).М., Наука, 1971