Одновременная зарядка нескольких аккумуляторов. Балансировочное зарядное устройство для Li-ion Балансировка аккумуляторных батарей

17.11.2023 Финвопрос

Сейчас на рынке полно зарядных устройств. Автоматы и нет, с измерением емкости и без него. Большинство зарядных устройств универсальны и могут заряжать элементы любой химии. Литий-ион и литий-полимер все чаще применяют в разных устройствах.
Не так давно я переделывал аккумулятор шуруповерта на литий-ионные элементы формата 18650. Заряжаю его умным зарядным устройством Turnigy. Но данное зарядное есть не у каждого.

Понадобится для сборки

Принял решение, собрать простое зарядное устройство с балансиром для литий-иона. Зарядное устройство имеет 3 одинаковых независимых канала. Им можно заряжать от одного элемента до трех. Если нужно, можно добавлять любое количество каналов. У меня же их три, то есть 3S или 11.1 вольт.
Корпусом для балансирующего зарядного устройства является корпус от сгоревшего роутера D-link. Если есть возможность, берите корпус побольше, очень тесно получается в нем работать.

Одним из главным компонентном, являются блоки питания каждого канала. Их роль выполняю платы зарядных устройств планшетов, с выходом 5 Вольт и током от 1 Ампера (или можно купить на Али Экспресс - .


Контроллерами заряда служат платы из Китая - . На каждый канал, свой контроллер. У меня платы без защиты, но она в данном случае не нужна. Можно применять платы контроллеров вместе с разъемами, у меня на двух они отсутствуют, сняты для других проектов. Цена на данные модули копеечная. Если занимаетесь доработкой устройств на литий-ионе и литий-полимере, то данные контроллеры незаменимы.

Изготовление балансировочного зарядного устройства

Платы контроллеров заряда нужно припаять к выходам плат зарядок. Можно и отдельно. Я припаял на толстые жилы от силового кабеля, так конструкция более жесткая.


На платах контроллеров заряда имеются светодиоды, которые индицируют заряд и окончание заряда. Их нужно выпаять. Вместо них будут обычные светодиоды, разного цвета. Они будут прикреплены к окошкам, где раньше моргали светодиоды роутера.


К светодиодам припаял провода от старого шлейфа жесткого диска компьютера. Если есть светодиоды с общим анодом(плюсом), то лучше применить их. У меня таких не оказалось, применил что есть.


На место старых светодиодов, припаиваем шлейфы со светодиодами. На фото у меня зеленый светодиод на 3 мм. Пришлось заменить, оказались паленые, не проверил перед распайкой.


Для задней панели нужно вырезать накладку. В ней проделываем пропилы под выключатель питания и выходной разъем на 4 пина. Разъем снял со старого жесткого диска. Можно применить любой, на нужное количество пинов, с током 1-2 Ампера.
Выключатель снял со старого блока питания компьютера. Накладку прикручиваем на два винта, для жесткости.


Выходной разъем приклеиваем на эпоксидный клей или соду с супер клеем. Я для быстроты приклеил и одним и другим.
Плата зарядок с контроллерами, приклеил на термо клей. Но перед фиксацией припаял сетевые проводочки.


Один из сетевых проводочков, припаиваем к выключателю. Второй, непосредственно к второму проводу сетевого шнура.


Теперь приклеиваем светодиоды. Я клеил термо клеем, можно и содой с супер клеем.


Распаиваем выходные перемычки.
Плюс первого контроллера на первую ножку выходного разъема. Минус его на вторую ножку и соединяем с плюсом второго контроллера. И так далее.


Корпус скручиваем и откладываем в сторону.


Сделаем провод под данной зарядное устройство.
Применил два отрезка проводов от компьютерного блока питания. Спаял в порядке с первого контакта одного разъема к контакту второго.


Подключаем зарядное устройство к аккумулятору шуруповерта (). Красный светодиод индицирует о идущем процессе заряда. По окончанию заряда, загорается зеленый светодиод. Соответственно загораются значки на корпусе: Wi-Fi, второй и четвертый компьютеры.


Вот такое зарядное устройство у нас получилось. Затраты минимальны, а польза большая.
Данным устройством можно заряжать сборки на литий-полимерах, те которые применяют моделисты в своем транспорте. Главное сделать правильный провод зарядки.

Наука не стоит на месте, в результате чего литий-полимерные аккумуляторы прочно вошли в нашу повседневную жизнь. Одни 18650 элементы чего стоят – о них не знает только ленивый. Причем в хобби радиоуправляемых моделей произошел качественный скачок на новый уровень! Компактность, высокая токоотдача и малый вес дают широкое поле для совершенствования существующих систем питания на базе аккумуляторов.

Наука пошла еще дальше, но мы остановимся пока на Li Ion варианте (литий-ионные).
Итак, в магазине было приобретено зарядно-балансировочное устройство торговой марки Turnigy для зарядки 2S и 3S сборок литий-полимерных аккумуляторов (разновидность литий ионных, далее LiPo).






На мой радиоуправляемый пенолет (модель сделанная из пенопластовых потолочных плит) Цессна 150 устанавливается батарея 2S – цифра перед S обозначает количество последовательно соединенных элементов LiPo. Заряжать было чем и раньше, но в поле носить зарядное устройство можно и попроще и подешевле.

Для чего столько заморочек?
При заряде литиево-полимерных батарей необходимо соблюдать несколько правил: сила тока должна поддерживаться на уровне 0,5С…1С, а напряжение аккумулятора не должно превышать 4,1…4,2 В.
Если в сборке присутствует несколько последовательно соединенных элементов, то небольшие отклонения в одном из них со временем приводят к преждевременной порче аккумуляторов, если схема не сбалансирована. Этот эффект не наблюдается у аккумуляторов NiCd или NiMh.
Как правило, в сборке все элементы имеют близкую, но не одинаковую, емкость. Если два элемента с разными емкостями соединены последовательно, то элемент с меньшей емкостью заряжается быстрее, чем с большей. Поскольку процесс заряда происходит до тех пор, пока не зарядится элемент с самой большой емкостью, то аккумулятор с меньшей емкостью будет перезаряжен. Во время разряда, наоборот, элементы с меньшей емкостью разряжаются быстрее. Это приводит к тому, что после многих циклов заряда-разряда различие емкостей увеличивается, а из-за частого перезаряда элементы с самой малой емкостью быстро приходят в негодность.
Эту проблему легко можно устранить, если контролировать потенциал элементов и следить, чтобы все элементы в блоке имели абсолютно одинаковое напряжение.
Поэтому крайне желательно использовать не просто зарядное устройство а с функцией балансирования.

Комплектация: зарядное устройство + кабель питания с крокодилами для подключения к блоку питания 12-15 Вольт или аккумулятору 12 Вольт.
Зарядное устройство при зарядке потребляет не более 900 мА.
Два индикатора зеленый и красный – зеленый контроль питания, красный горит когда идет процесс зарядки-балансировки. По окончанию процесса или при извлечении балансировочного разъема красный светодиод гаснет.
Заряд происходит до напряжения 4.2 В на элемент. Замер напряжений производился на работе, на образцовом вольтметре. Напряжения по окончанию заряда на 1 и 2 элементе были равны 4.20 Вольт, на 3 элементе небольшой перезаряд 4.24 Вольта.

Расчлененка:


Схема отчасти классическая: повышающий преобразователь, далее 3 компаратора дающие сигнал на контроллер (затертая маркировка в стиле китайцев) А вот силовая часть схемы вызвала недоумение. Причиной лезть в потроха стала моя невнимательность. Я оборвал случайно балансировочные провода на аккумуляторе 3S (от шуруповерта) и при пайке перепутал местами выход 1 и 3 элемента, в результате при подключении к ЗУ (зарядное устройство) из последнего пошел дымок. Визуальный осмотр выявил неисправный транзистор N010X описания на который я не нашел, но нашел упоминание на аналог – это оказался Р канальный полевой транзистор




Остальные детали при проверке оказались исправные. Запасов Р канальных полевиков дома не оказалось, в местном магазине цены бешеные. Вот тут то и пригодился древний диалап модем Зуксель, в котором оказалась нужная мне деталь (с более лучшими характеристиками). Поскольку зрение и размеры детали не дали возможности установить все на место, пришлось извратиться и установить деталь на свободное место с обратной стороны.
Не понравилось в силовой части то, что в режиме 2S зарядник работает как и большинство аналогичных, а вот с 3м элементом не все так просто. Деталь сгорела не просто так, она выполняла функцию подачи напряжения на заряжаемый аккумулятор в целом. Функционально зарядка выполняется сразу всех трех элементов, по мере зарядки 1 и 2 элемента открываются транзисторы и шунтируют элементы через резисторы давая тем самым току идти в обход заряженных элементов. Полевой транзистор отсекает напряжение в целом, он же контролирует заряд 3го элемента. А если 3й элемент зарядился раньше 1 и 2 го, то питание идет через диод на зарядку оставшихся элементов. Во общем схема мутная, прихожу к выводу что элементарная экономия деталей.

Виновник приключений свалившихся на мою голову:


Шуруповерт Бош переделанный на литиевые аккумуляторы от ноутбука взамен умерших от кристаллизации NiCd. На данный момент зарядное устройство перешло в разряд штатного к переделанному шуруповерту. Польный цикл заряда (4Ач) происходит примерно за 6 часов, но я еще ни разу не разряжал батарею в ноль, поэтому необходимости в длительном заряде нет.

Заключение
Бюджетное зарядное устройство. В частном случае подошло как нельзя кстати. Шуруповерт счастлив.
Ток зарядки 800мА дает ограничение на минимальную емкость заряжаемых элементов. Внимательно смотрите описание к своей батарее, где указан максимальный ток заряда. Нарушение правил эксплуатации может привести к порче и возгоранию аккумуляторов.

Планирую купить +21 Добавить в избранное Обзор понравился +22 +46



Особенности:

-Балансир

-

-Контроль по току

-


Описание выводов :

Режим 4S: Режим 3S:
" B- " - общий минус батареи
" B1 " - +3,7В
" B2 " - +7,4В
" B3 " - +11,1В
" B+ " - общий плюс батареи

" B- " - общий минус батареи
" B1 " - закоротить на "B-"
" B2 " - +3,7В
" B3 " - +7,4В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)

">



Особенности:

-Балансир : Плата контроля HCX-D119 для 3S/4S Li-Ion батареи имеет встроенную функцию балансира. При этом, в процессе заряда батареи, напряжение на кажой из ячеек выравнивается до значения 4,2В.
Для того, чтобы воспользоваться функцией выравнивания напряжения вам необходимо выдержать батарею под напряжением 12,6/16,8В не менее 60 - 120 мин после окончания активной фазы зарядки батареи. Для работы балансира важно, чтобы напряжение было не выше 12,6 / 16,8В: при превышении этих напряжений контроллер встанет в состоянии защиты и балансировка аккумуляторов производиться не будет

-Контроль напряжения на каждой из ячеек : При выходе напряжения на какой-либо из ячеек за пороговые значения вся батарея автоматически отключается.

-Контроль по току : При превышении током нагрузки пороговых значений вся батарея автоматически отключается.

- Возможность работы c батареями 3S (3 последовательных аккумулятора) Контроллер HCX-D119 имеет 100% совместимость с Li-Ion батареями 3S (11,1В). Для переключения контроллера в режим 3S необходимо перемкнуть контакты R8, а резистор R7 переместить на R11 (R7, при этом, остается разорванным) и площадку "B1" замкнуть на площадку "B-"


Описание выводов :

Режим 4S: Режим 3S:
" B- " - общий минус батареи
" B1 " - +3,7В
" B2 " - +7,4В
" B3 " - +11,1В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)
" B- " - общий минус батареи
" B1 " - закоротить на "B-"
" B2 " - +3,7В
" B3 " - +7,4В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)

Многие технологии в области накопления электрической энергии получают свое развитие и становятся все более популярными, но литий-ионная технология накопления электрической энергии на данный момент является наиболее перспективной для нынешнего поколения электрических транспортных средств (электромобилей).

В отличии от тех же свинцово-кислотных аккумуляторных батарей литий-ионные (Li-ion) аккумуляторные батареи требуют лучшего ухода и более требовательны к зарядке. Зарядка требует гораздо большего, чем просто подключения к сети. Даже разрядка аккумулятора в определенный момент может привести к необратимым повреждениям. Это привело к разработке довольно сложной стратегии зарядки и разрядки на уровне отдельных ячеек.

Почему именно литий-ионные?

Литий имеет атомный номер 3 – он самый легкий из металлов. Он обладает большим электрохимическим потенциалом и обладает большой удельной энергией на единицу веса – что является огромным преимуществом для аккумуляторов. К сожалению не все так гладко. Помимо положительных качеств литий имеет и отрицательные качества, такие как неустойчивость, взрывоопасность и легкая воспламеняемость при контакте с водой или воздухом. Следует отметить, что исследования по применению более безопасных материалов велись ранее и ведутся сейчас.

Положительный электрод литий-ионной батареи может использовать один из множества интеркалированных соединений лития, например, таких как фосфат лития железа (lithium iron phosphate LFP), оксид кобальта-марганца-никеля-лития (nickel manganese cobalt NMC), имеющих немного различные характеристики. Отрицательный электрод, как правило, изготавливают из графита.

Жидкий электролит состоит из солей лития в органическом растворителе, например в таком как диметилкарбонат или этиленкарбонат. Во время работы аккумуляторной батареи ионы лития переходят от положительного электрода к отрицательному (во время разрядки), и, наоборот, во время зарядки.

Литий-ионные батареи имеют ряд преимуществ над другими, например, свинцово-кислотными и никель-металл-гидридными (Ni-MH). Они легкие, не имеют памяти, имеют низкий уровень саморазряда (порядка 1% в неделю). Номинальное напряжение одной ячейки составляет порядка 3,6 В, в то время как для никель-металл-гидридных порядка 1,5 В, а для свинцово-кислотных 2,0 В. Это позволяет при одних и тех же габаритах получить большее напряжение, необходимое для питания электрических транспортных средств.

Например, батарея в Nissan Leaf содержит 192 литий-ионные ячейки с NMC (смотри выше) и графитовых электродов. Ячейки расположены в виде 96х2 параллельно-последовательного массива для получения на выходе 360 В и плотности энергии 140 Вт*ч/кг. В 1996 году компания General Motors начала серийный выпуск электромобилей (EV1) с использованием свинцово-кислотных аккумуляторов с выходным напряжением 312 В и плотностью энергии всего лишь 31 Вт*ч/кг.

Опасность при эксплуатации

Помимо положительных качеств литий-ионных аккумуляторов существуют и отрицательные. В отличии от других типов аккумуляторов они очень чувствительны к разряду, перезарядке, перегреву и сверхтокам.

Данные качества могут вызывать опасные ситуации не только в автомобильном транспорте. Например в 2013 году в течении трех месяцев были приостановлены полеты самолета Boeing 787 Dreamliner после того как причиной двух возникших на борту пожаров признали именно тепловой пробой литий-ионных аккумуляторов.

Ключевые параметры батарей

В любом транспортном средстве, которое зависит от аккумуляторных батарей как от части трансмиссии важно, чтоб система управления батареи (BMS battery-management system) непрерывно отслеживала ее состояние независимо от типа аккумуляторных батарей. Это касается как обычных автомобилей с двигателями внутреннего сгорания, где аккумулятор необходим для запуска двигателя, для гибридных автомобилей, использующих как электродвигатели так двигатели внутреннего сгорания, так и электромобилей, которые для движения используют только электродвигатели.

Обычно используют два параметра для оценки состояния аккумулятора или ячейки:

  • Состояние заряда (State of charge SoC) – можно сравнить с датчиком уровня топлива автомобиля. Он измеряет энергию батареи от 0% (разряжено) до 100% (полностью заряжено). Обратная метрика – это глубина разряда (depth of discharge DoD).
  • Состояние работоспособности (State of health SoH) – фигура сравнения, оценивает состояние батареи или ячейки по отношению к ее идеальному состоянию (если аккумулятор имеет характеристики для сравнения). SoH обычно начинается со 100% и постепенно уменьшается со старением батареи.

BMS обычно использует SoC и SoH для регулировки производительности и наблюдения за работоспособностью аккумуляторов.

Зарядка и разрядка происходят через терминалы, соединенные с каждым концом стека группы, а не на уровне ячейки. В свинцово-кислотных и никель-металлогидридных системах измерение и контроль отдельных ячеек не нужен, так как они менее чувствительны к неполной зарядке. Литий-ионные аккумуляторы требуют более сложного подхода.

Измерение заряда ячейки

Заряд отдельной ячейки можно определить с помощью измерения напряжения разомкнутой цепи (open-circuit voltage OCV) и вывести соответствующее состояние заряда или разряда из графика, который должен быть аналогичен показанному ниже:

Результаты могут вычислений могут быть улучшены за счет применения различных поправочных коэффициентов, например токовых и температурных. Производители все время совершенствовали и совершенствуют свои изделия, и это позволило аккумуляторным батареям поддерживать постоянное выходное напряжение практически во всем диапазоне заряда.

Как бы это странно не звучало, но такое улучшение лишь усложнило систему управления в получении обратной связи. Это вызвано тем, что мизерные различия в напряжениях аккумуляторах в реальности могут означать значительную разницу их зарядов. Точность измерения напряжения должна быть огромна (до нескольких милливольт), что требует высокой точности (analog-to-digital converter ADC).

14 разрядный 5 вольтовый АЦП является хорошим выбором для практического измерения напряжения ячейки (open-circuit voltage OCV) с напряжением до 4,2 В. Как правило, один АЦП измеряет напряжение не одной ячейки, а нескольких, при этом используется мультиплексор для переключения между каналами измерений. Использование структуры с последовательным приближением регистра (successive-approximation-register SAR) является более предпочтительным, так как не имеет задержки между последовательными замерами.

После того как заряд каждой ячейки измерен, система балансировки нагрузки приступает к выравнивания зарядов. Для балансировки могут применять один из подходов – пассивную балансировку и активную балансировку.

Пассивная балансировка нагрузки

Система пассивной балансировки получает энергию непосредственно от самой ячейки и рассеивает ее в виде тепла на резисторе. На рисунке ниже показана схема для одной ячейки стека:

Здесь значение VSENSEn+1 будет показателем заряда Celln+1. Когда заряд ячейки слишком высок, Qn+1 включается и энергия рассеивается на резисторе Rdisch_n+1.
Алгоритм управления, работающий на контроллере BMS (Battery Management System), уравновешивает заряд каждой ячейки путем измерения напряжения на ней и разрядки ее (если это необходимо) до тех пор, пока напряжения на ячейках группы не выровняются. BMS выполняет также функции диагностики батареи — такие как перегрев, перезарядка, недозарядка и так далее. После балансировки аккумуляторная батарея заряжается таким образом, чтоб в нужной степени зарядить каждую ячейку.

Активная балансировка нагрузки

Пассивная балансировка – система однонаправленная, она может только поглощать заряд ячейки. Активная балансировка более сложная. Она не рассеивает энергию ячейки, а из более заряженной ячейки переносит энергию в менее заряженную через ряд двунаправленных DC-DC преобразователей. Микроконтроллер следит за зарядами каждого элемента и определяет какая ячейка должна быть разряжена, а какая заряжена.
Ниже показана блок схема типичного активного балансировщика нагрузки:

Активная система балансировки нагрузки использует двунаправленные преобразователи постоянного тока для источника или поглотителя тока под управлением микроконтроллера BMS.
Матричный коммутатор обеспечивает маршрутизацию зарядов в, или из ячеек, которые находятся под управлением микроконтроллера BMS через SPY или другой интерфейс. Матричный коммутатор подключается к DC-DC преобразователям, которые регулируют ток (он может быть как положителен, так и отрицателен) каждой ячейки, которую нужно зарядить или разрядить. Несколько блоков могут работать параллельно для балансировки целого стека.
Изолированный DC-DC преобразователь обменивается энергией между ячейкой и стеком аккумулятора. Вместо использования резистора и рассеивания тепла, величина тока перетекающего при зарядке-разрядке контролируется алгоритмом балансировки нагрузки.

Тенденции развития аккумуляторных батарей

Стоимость аккумуляторных батарей для электромобилей снизилась с 1000$ за киловатт-час в 2007 году, до 450$ в 2014 году. У некоторых ведущих мировых производителей аккумуляторов цена за киловатт-час достигает 300$. Тенденции развития данных технологий указывают на то, что к 2020 году цена за киловатт-час может быть снижена до 250$.
Исследование в области накопления энергии ведутся во всех ВУЗах и лабораториях мира и практически ежемесячно мы слышим об очередном открытии в этой области.
Развитие рынка электроники тоже позволяет упрощать и совершенствовать технологии изготовления и эксплуатации аккумуляторных батарей, а также совершенствовать их в вопросах безопасности. Это позволяет изготавливать более узкоспециализированные изделия, ориентированные под выполнение меньшего количества задач, но с более высоким качеством и производительностью.

Как изготавливают литий-ионные батареи расскажет видео внизу:

При работе над некоторыми конструкциями питающимися от автономного источника питания, возник вопрос в выборе последних.

На мой взгляд из доступных лучшие LI-ION аккумуляторы, тем более, что у меня есть некое количество незащищенных банок от ноутбуковских батарей. Но с ними возникает уже широко известная проблема - их сложный алгоритм зарядки при несоблюдении которого постоянно не дозаряжен аккумулятор быстро выйдет со строя, а при перезаряде также, но с активным разрушением. Резкий перезаряд наступает при превышении напряжения на заряжаемом элементе на 1-2 сотых вольта от требуемого, проследить такое практически невозможно, поэтому производители рекомендуют автоматические ограничители.

Есть решения и готовые устройства для этих целей как приставки к зарядным устройствам для незащищенных аккумуляторов, так и встраиваемые в аккумулятор.

В общем, для незащищенных аккумуляторов нужен балансир - ограничитель напряжения заряда и защита от чрезмерного разряда. Делать множество мелких девайсов на каждую банку пока нету смысла, решил сделать приставку к зарядному устройству.

Интересное и простое решение нашлось у чехов . Такой себе мощный стабилитрон, срабатывающий при граничном для элемента напряжении. Повторяемость схемы отличная, при заведомо исправных деталях.

Схема одного модуля.

Балансир составлен из трех идентичных независимых модулей и предназначен для зарядки одно элементного аккумулятора, батареи из двух или трех последовательно соединенных банок.

Зарядка одного Li-ION элемента возможна различными напряжениями, балансир здесь служит и как делитель напряжения если зарядное рассчитано на большее количество элементов..

Также и при зарядке двух последовательных элементов от различных напряжений

Заряд батареи из трех элементов. Для 4 и более банок, думаю решение понятно - увеличение количества модулей в схеме.

Вид готового ограничителя, реализуемого фирмой "E-Fly".

То, что получилось у меня. С таким теплоотводом заряжая током до 1-3 ампер соединеных несколько батарей паралельно или при очень большой разницы в емкости элементов по окончании заряда могу не бояться за здоровье транзисторов.

С задранной защитной панелью.

При исполнении без теплоотводов транзисторы смогут выдержать ток до 0.5 А, при больших токах (до 3-х Ампер) нужна хорошая теплоотдача.

Нагрев транзисторов происходит только при достижении аккумулятора граничного напряжения зарядки, когда лишнее напряжение будет гасится сопротивлением открытого транзистора. В этом и заключается принцип защиты от перезаряда. Это очень удобно при зарядке последовательной батареи с неравномерно заряженных элементов. При достижении граничного напряжения элемента, открывается транзистор и основной ток идет мимо аккумулятора, другие аккумуляторы батареи, которые еще не достигли конечного заряда, продолжают заряжаться. Отключенный таким образом аккумулятор продолжает заряжаться очень малым током стабилизированного напряжения (капельный заряд). При срабатывании защиты всех модулей, заряд условно закончен и систему можно отключать, для простого устройства такая работа вполне прилична.

Настройка

Порог срабатывания ограничителя 4.200 вольта, при первоначальной настройке устройства нужно с большой точностью сделать регулировку этого значения.

На устройство без подсоединенных аккумуляторов подается напряжение от источника питания, зарядного устройства с ограничителем тока в пределах 0.15-1А. Напряжение можно подавать как на отдельный модуль 4.5-5 вольт так и на всю схему 13.5-15 вольт, и подстроечным резистором в каждом модуле выставляем порог зажигания светодиода 4.16 вольта, контролируя на выходных клеммах напряжение. Все модули должны быть отрегулированы на один порог с точностью до 0.001 вольта.

Даже новые, но дешевые вольтметры и прочие комбинированные приборы имеют погрешности, это надо учесть. Источник питания использовать стабилизированный с хорошей фильтрацией. Зарядное устройство для которого предназначен этот ограничитель также должно иметь функцию ограничения тока, хороший выходной фильтр и быть рассчитано на напряжение, которое равно суммарному напряжению батареи заряженных аккумуляторов + 1-3 вольта. Если использовать этот девайс в качестве балансира для выравнивания банок планируется с готовым зарядным для аккумуляторов в котором уже автоматически контролируется напряжение полного заряда с последующим отключением, нужно узнать порог этого отключения, и регулировать ограничитель уже под имеющееся зарядное устройство, это может быть 4.10 - 4.19 вольт или типа того.

Я регулировал порог срабатывания так:

Последовательно соединил лабораторный блок питания, автомобильную лампочку 12 вольт 1 ампер в качестве ограничителя тока и сам ограничитель. Подал напряжение 15 вольт и меряя на выходе модуля мультиметром напряжение регулировкой подстроечного добивался показания 4.16 вольта на каждом модуле, так как не имелось под руками точнее прибора, да и блок питания имеет на выходе некую пульсацию напряжения не смотря на все фильтра. Этот блок питания и служит мне зарядным устройством.

Вместо указанных мощных транзисторов можно применить КТ818, цоколевка у них немного иная и без переделки печатной платы их можно установить со стороны дорожек, припаяв как корпуса DPAK или “лицом“ в обратную сторону.

Печатная плата в формате Sprint-layout 6.0 , при печати делать зеркально. Позиционные номера деталей указаны в лае.